File size: 47,259 Bytes
59b2a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
#!/usr/bin/env python
'''
    This file is to train Stable Video Diffusion with Conditioning design by my peronal implementation which is based on diffusers' training example code.
'''

import argparse
import logging
import math
import os, sys
import time
import random
import shutil
import warnings
from PIL import Image 
from einops import rearrange, repeat
from pathlib import Path
from omegaconf import OmegaConf
import imageio
import cv2


import accelerate
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import RandomSampler
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig


import diffusers
from diffusers import (
    AutoencoderKLTemporalDecoder,
    DDPMScheduler,
    UniPCMultistepScheduler,
)
from diffusers.training_utils import EMAModel, compute_snr
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available, load_image, export_to_video
from diffusers.utils.import_utils import is_xformers_available
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils.torch_utils import randn_tensor
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
if is_wandb_available():
    import wandb


# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from svd.pipeline_stable_video_diffusion_controlnet import StableVideoDiffusionControlNetPipeline
from svd.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from svd.temporal_controlnet import ControlNetModel
from utils.img_utils import resize_with_antialiasing
from utils.optical_flow_utils import flow_to_image, filter_uv, bivariate_Gaussian
from data_loader.video_dataset import tokenize_captions
from data_loader.video_this_that_dataset import Video_ThisThat_Dataset, get_thisthat_sam
from train_code.train_svd import import_pretrained_text_encoder

# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
# check_min_version("0.25.0.dev0")

logger = get_logger(__name__)
warnings.filterwarnings('ignore')


###################################################################################################################################################
def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
    parser.add_argument(
        "--config_path",
        type=str,
        default="config/train_image2video_controlnet.yaml",
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )

    args = parser.parse_args()
    return args


    
def log_validation(vae, unet, controlnet, image_encoder, text_encoder, tokenizer, config, accelerator, weight_dtype, step, 
                        parent_store_folder=None, force_close_flip=False, use_ambiguous_prompt=False):
    # This function will also be used in other files
    print("Running validation... ")


    # Init
    validation_source_folder = config["validation_img_folder"] 
    

    # Init the pipeline
    pipeline = StableVideoDiffusionControlNetPipeline.from_pretrained(
        config["pretrained_model_name_or_path"],        # Still based on regular SVD config
        vae = vae,
        image_encoder = image_encoder,
        unet = unet,
        revision = None,    # Set None directly now
        torch_dtype = weight_dtype,
    )
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)


    # Process all image in the folder
    frames_collection = []
    for image_name in sorted(os.listdir(validation_source_folder)):
        if accelerator.is_main_process:
            if parent_store_folder is None:
                validation_store_folder = os.path.join(config["validation_store_folder"] + "_" + config["scheduler"], "step_" + str(step), image_name)
            else:
                validation_store_folder = os.path.join(parent_store_folder, image_name)
                
            if os.path.exists(validation_store_folder):
                shutil.rmtree(validation_store_folder)
            os.makedirs(validation_store_folder)

        image_path = os.path.join(validation_source_folder, image_name, 'im_0.jpg')
        ref_image = load_image(image_path)      # [0, 255] Range
        ref_image = ref_image.resize((config["width"], config["height"]))


        # Prepare text prompt
        if config["use_text"]:
            # Read the file
            file_path = os.path.join(validation_source_folder, image_name, "lang.txt")
            file = open(file_path, 'r')
            prompt = file.readlines()[0]  # Only read the first line
            if use_ambiguous_prompt:
                prompt = prompt.split(" ")[0] + " this to there"
                print("We are creating ambiguous prompt, which is: ", prompt)
        else:
            prompt = ""
        # Use the same tokenize process as the dataset preparation stage
        tokenized_prompt = tokenize_captions(prompt, tokenizer, config, is_train=False).unsqueeze(0).to(accelerator.device)    # Use unsqueeze to expand dim

        # Store the prompt for the sanity check
        f = open(os.path.join(validation_store_folder, "lang_cond.txt"), "a")
        f.write(prompt)
        f.close()

        # Flip the image by chance (it is needed to check whether there is any object position words [left|right] in the prompt text)
        flip = False
        if not force_close_flip:    # force_close_flip is True in testing time; else, we cannot match in the same standard
            if random.random() < config["flip_aug_prob"]:
                if config["use_text"]:
                    if prompt.find("left") == -1 and prompt.find("right") == -1:    # Cannot have position word, like left and right (up and down is ok)
                        flip = True
                else:
                    flip = True
            if flip:
                print("Use flip in validation!")
                ref_image = ref_image.transpose(Image.FLIP_LEFT_RIGHT)


        if config["data_loader_type"] == "thisthat":
            condition_img, reflected_motion_bucket_id, controlnet_image_index, coordinate_values = get_thisthat_sam(config, 
                                                                                                                    os.path.join(validation_source_folder, image_name),
                                                                                                                    flip = flip, 
                                                                                                                    store_dir = validation_store_folder,
                                                                                                                    verbose = True)
        else:
            raise NotImplementedError("We don't support such data loader type")



        # Call the pipeline
        with torch.autocast("cuda"):
            frames = pipeline(
                                image = ref_image, 
                                condition_img = condition_img,       # numpy [0,1] range
                                controlnet = accelerator.unwrap_model(controlnet),
                                prompt = tokenized_prompt,
                                use_text = config["use_text"],
                                text_encoder = text_encoder,
                                height = config["height"],
                                width = config["width"],
                                num_frames = config["video_seq_length"], 
                                decode_chunk_size = 8, 
                                motion_bucket_id = reflected_motion_bucket_id,
                                controlnet_image_index = controlnet_image_index,
                                coordinate_values = coordinate_values,
                                num_inference_steps = config["num_inference_steps"],
                                max_guidance_scale = config["inference_max_guidance_scale"],
                                fps = 7,
                                use_instructpix2pix = config["use_instructpix2pix"],
                                noise_aug_strength = config["inference_noise_aug_strength"],
                                controlnet_conditioning_scale = config["outer_conditioning_scale"],
                                inner_conditioning_scale = config["inner_conditioning_scale"],
                                guess_mode = config["inference_guess_mode"],        # False in inference
                                image_guidance_scale = config["image_guidance_scale"],
                              ).frames[0]    

        for idx, frame in enumerate(frames):
            frame.save(os.path.join(validation_store_folder, str(idx)+".png"))
        imageio.mimsave(os.path.join(validation_store_folder, 'combined.gif'), frames, duration=0.05)

        frames_collection.append(frames)


    # Cleaning process
    del pipeline
    torch.cuda.empty_cache()

    return frames_collection   # Return resuly based on the need


def tensor_to_vae_latent(inputs, vae):
    video_length = inputs.shape[1]

    inputs = rearrange(inputs, "b f c h w -> (b f) c h w")
    latents = vae.encode(inputs).latent_dist.mode()
    latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length)    # Use f or b to rearrage should have the same effect
    latents = latents * vae.config.scaling_factor

    return latents



def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
    """Draws samples from an lognormal distribution."""
    u = torch.rand(shape, dtype=dtype, device=device) * (1 - 2e-7) + 1e-7 # In the range [0, 1]
    # TODO: "* (1 - 2e-7) + 1e-7" is not included in previous code, I add it back, don't why whether there is any influence now
    return torch.distributions.Normal(loc, scale).icdf(u).exp()


def get_add_time_ids(
        unet_config,
        expected_add_embed_dim,
        fps,
        motion_bucket_id,
        noise_aug_strength,
        dtype,
        batch_size,
        num_videos_per_prompt,
        do_classifier_free_guidance = False,
    ):

    # Construct Basic add_time_ids items
    add_time_ids = [fps, motion_bucket_id, noise_aug_strength]


    # Sanity Check
    passed_add_embed_dim = unet_config.addition_time_embed_dim * len(add_time_ids)
    if expected_add_embed_dim != passed_add_embed_dim:
        raise ValueError(
            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
        )

    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
    add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1)

    return add_time_ids
####################################################################################################################################################################



def main(config):
    # Read Config Setting
    resume_from_checkpoint = config["resume_from_checkpoint"]
    output_dir = config["output_dir"]
    logging_name = config["logging_name"]
    mixed_precision = config["mixed_precision"]
    report_to = config["report_to"]
    pretrained_model_name_or_path = config["pretrained_model_name_or_path"]
    pretrained_tokenizer_name_or_path = config["pretrained_tokenizer_name_or_path"]
    gradient_checkpointing = config["gradient_checkpointing"]
    learning_rate = config["learning_rate"]
    adam_beta1 = config["adam_beta1"]
    adam_beta2 = config["adam_beta2"]
    adam_weight_decay = config["adam_weight_decay"]
    adam_epsilon = config["adam_epsilon"]
    train_batch_size = config["train_batch_size"]
    dataloader_num_workers = config["dataloader_num_workers"]
    gradient_accumulation_steps = config["gradient_accumulation_steps"]
    num_train_iters = config["num_train_iters"]
    lr_warmup_steps = config["lr_warmup_steps"]
    checkpointing_steps = config["checkpointing_steps"]
    process_fps = config["process_fps"]
    train_noise_aug_strength = config["train_noise_aug_strength"]
    use_8bit_adam = config["use_8bit_adam"]
    scale_lr = config["scale_lr"]
    conditioning_dropout_prob = config["conditioning_dropout_prob"]
    checkpoints_total_limit = config["checkpoints_total_limit"]
    validation_step = config["validation_step"]
    partial_finetune = config['partial_finetune']
    load_unet_path = config['load_unet_path']

    if mixed_precision == 'None':   # For mixed precision use
        mixed_precision = 'no'


    # Default Setting
    revision = None
    variant = "fp16"        # TODO: 这里进行了调整,不知道会有多少区别,现在跟unet training保持一致
    lr_scheduler = "constant"
    max_grad_norm = 1.0
    tracker_project_name = "img2video"
    num_videos_per_prompt = 1
    seed = 42
    # No CFG in training now



    # Define the accelerator
    logging_dir = Path(output_dir, logging_name)
    accelerator_project_config = ProjectConfiguration(project_dir=output_dir, logging_dir=logging_dir)
    accelerator = Accelerator(
        gradient_accumulation_steps = gradient_accumulation_steps,
        mixed_precision = mixed_precision,
        log_with = report_to,
        project_config = accelerator_project_config,
    )
    generator = torch.Generator(device=accelerator.device).manual_seed(seed)


    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()


    # Handle the repository creation
    if accelerator.is_main_process and resume_from_checkpoint != "latest":      # For the latest checkpoint version, we don't need to delete our folders
        # Validation file
        validation_store_folder = config["validation_store_folder"] + "_" + config["scheduler"]
        print("We will remove ", validation_store_folder)
        if os.path.exists(validation_store_folder):
            archive_name = validation_store_folder + "_archive"
            if os.path.exists(archive_name):
                shutil.rmtree(archive_name)
            print("We will move to archive ", archive_name)
            os.rename(validation_store_folder, archive_name)
        os.makedirs(validation_store_folder)

        # Output Dir
        if os.path.exists(output_dir):
            shutil.rmtree(output_dir)
            # os.makedirs(output_dir, exist_ok=True)

        # Log
        if os.path.exists("runs"):
            shutil.rmtree("runs")
        
        # Copy the config to here
        os.system(" cp config/train_image2video_controlnet.yaml " + validation_store_folder + "/")


    # Load All Module Needed
    feature_extractor = CLIPImageProcessor.from_pretrained(
        pretrained_model_name_or_path, subfolder="feature_extractor", revision=revision
    )   # This instance has now weight, they are just seeting file
    image_encoder = CLIPVisionModelWithProjection.from_pretrained(
        pretrained_model_name_or_path, subfolder="image_encoder", revision=revision, variant=variant
    )
    vae = AutoencoderKLTemporalDecoder.from_pretrained(
        pretrained_model_name_or_path, subfolder="vae", revision=revision, variant=variant
    )
    if load_unet_path != None:
        print("We will use pretrained UNet path by our, at ", load_unet_path)
        unet = UNetSpatioTemporalConditionModel.from_pretrained(
            load_unet_path, 
            subfolder = "unet", 
            low_cpu_mem_usage = True,       
        )   # For the variant, we don't have fp16 version, so we will read from fp32
    else:
        print("We will still use provided UNet path")
        unet = UNetSpatioTemporalConditionModel.from_pretrained(
            pretrained_model_name_or_path, 
            subfolder = "unet", 
            low_cpu_mem_usage = True,
            variant = variant,
        )

    # Prepare for the tokenizer if use text
    tokenizer = AutoTokenizer.from_pretrained(
        pretrained_tokenizer_name_or_path,
        subfolder = "tokenizer",
        revision = revision,
        use_fast = False,
    )

    if config["use_text"]:
        # Clip Text Encoder
        text_encoder_cls = import_pretrained_text_encoder(pretrained_tokenizer_name_or_path, revision)
        text_encoder = text_encoder_cls.from_pretrained(
            pretrained_tokenizer_name_or_path, subfolder = "text_encoder", revision = revision, variant = variant
        )
    else:
        text_encoder = None

    # Init for the Controlnet (check if has pretrained path to load)
    if config["load_controlnet_path"] != None:
        print("We will load pre-trained controlnet from ", config["load_controlnet_path"])
        controlnet = ControlNetModel.from_pretrained(config["load_controlnet_path"], subfolder="controlnet")
    else:
        controlnet = ControlNetModel.from_unet(unet, load_weights_from_unet=True, conditioning_channels=config["conditioning_channels"])


    # Store the config due to the disappearance after accelerator prepare
    unet_config = unet.config
    expected_add_embed_dim = unet.add_embedding.linear_1.in_features


    # Freeze vae + feature_extractor + image_encoder, but set unet to trainable
    vae.requires_grad_(False)       
    image_encoder.requires_grad_(False)
    unet.requires_grad_(False)          # UNet won't be trained in conditioning branch
    controlnet.requires_grad_(False)    # Will turn back to requires grad later on
    if config["use_text"]:
        text_encoder.requires_grad_(False)


    # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16


    # Move vae + unet + image_encoder to gpu and cast to weight_dtype
    vae.to(accelerator.device, dtype=weight_dtype)
    unet.to(accelerator.device, dtype=weight_dtype)     # we don't train UNet anymore, so we cast it here
    image_encoder.to(accelerator.device, dtype=weight_dtype)
    if config["use_text"]:
        text_encoder.to(accelerator.device, dtype=weight_dtype)



    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            if accelerator.is_main_process:
                i = len(weights) - 1

                while len(weights) > 0:
                    weights.pop()
                    model = models[i]

                    sub_dir = "controlnet"
                    model.save_pretrained(os.path.join(output_dir, sub_dir))

                    i -= 1

        def load_model_hook(models, input_dir):
            while len(models) > 0:
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)


    if gradient_checkpointing:
        controlnet.enable_gradient_checkpointing()


    # Check that all trainable models are in full precision
    low_precision_error_string = (
        " Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training, copy of the weights should still be float32."
    )
    if accelerator.unwrap_model(controlnet).dtype != torch.float32:
        raise ValueError(
            f"Controlnet loaded as datatype {accelerator.unwrap_model(controlnet).dtype}. {low_precision_error_string}"
        )
    
    


    ################################ Make Training dataset  ######################################
    if config["data_loader_type"] == "thisthat":    # Only keep thisthat mode now
        train_dataset = Video_ThisThat_Dataset(config, accelerator.device, tokenizer=tokenizer)
    else:
        raise NotImplementedError("We don't support such data loader type")

    sampler = RandomSampler(train_dataset)
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        sampler = sampler,
        batch_size = train_batch_size,
        num_workers = dataloader_num_workers * accelerator.num_processes,
    )       
    ##############################################################################################
    


    ####################################### Optimizer Setting ##############################################################
    if scale_lr:
        learning_rate = (
            learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
        )

    # 8bit adam to save more memory
    if use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )

        optimizer_cls = bnb.optim.AdamW8bit
    else:
        optimizer_cls = torch.optim.AdamW
    
    
    # Make ControlNet require Grad
    controlnet.requires_grad_(True)


    ###################### For partial fine-tune setting #######################
    parameters_list = []
    for name, para in controlnet.named_parameters():
        if partial_finetune:    # The partial finetune we use is to only train attn layers, which will be ~190M params (TODO:needs to check later for exact value)
            if not name.find("attn") != -1:     # Only block the spatial Transformer
                para.requires_grad = False
            else:
                parameters_list.append(para)
                para.requires_grad = True  
        else:
            parameters_list.append(para)
            para.requires_grad = True

    # Double check the weight that will be trained
    total_params_for_training = 0
    for name, param in controlnet.named_parameters():
        if param.requires_grad:
            total_params_for_training += param.numel()
            print(name + " requires grad update")    
    print("Total parameter that will be trained in controlnet has ", total_params_for_training)
    #############################################################################

    # Optimizer creation
    optimizer = optimizer_cls(
        parameters_list,
        lr = learning_rate,
        betas = (adam_beta1, adam_beta2),
        weight_decay = adam_weight_decay,
        eps = adam_epsilon,
    )


    # Scheduler and Training steps
    dataset_length = len(train_dataset)
    print("Dataset length read from the train side is ", dataset_length)
    num_update_steps_per_epoch = math.ceil(dataset_length / gradient_accumulation_steps)
    max_train_steps = num_train_iters * train_batch_size

    # Learning Rate Scheduler   (we all use constant)
    lr_scheduler = get_scheduler(
        "constant",
        optimizer = optimizer,
        num_warmup_steps = lr_warmup_steps * accelerator.num_processes,
        num_training_steps = max_train_steps *  accelerator.num_processes,
        num_cycles = 1,
        power = 1.0,
    )
    #######################################################################################################################
    


    # Prepare everything with our `accelerator`.
    controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        controlnet, optimizer, train_dataloader, lr_scheduler
    )   



    # We need to RECALCULATE our total training steps as the size of the training dataloader may have changed.
    print("accelerator.num_processes is ", accelerator.num_processes)
    print("num_train_iters is ", num_train_iters)
    num_train_epochs = math.ceil(num_train_iters * accelerator.num_processes * gradient_accumulation_steps / dataset_length) 
    print("num_train_epochs is ", num_train_epochs)

    # We need to initialize the trackers we use, and also store our configuration.
    if accelerator.is_main_process: # Only on the main process!
        tracker_config = dict(vars(args))
        accelerator.init_trackers(tracker_project_name, tracker_config)



    # Train!
    logger.info("***** Running training *****")
    logger.info(f"  Dataset Length = {dataset_length}")
    logger.info(f"  Num Epochs = {num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {train_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")



    # Load the Closest / Best weight       TODO: need to check how to use checkpoints from pre-trained weights!!!
    global_step = 0     # Catch the current iteration
    first_epoch = 0
    if resume_from_checkpoint:          # Resume Checkpoints!!!!!
        if resume_from_checkpoint != "latest":
            path = os.path.basename(resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None
            print("We will resume the latest weight ", path)

        if path is None:
            accelerator.print(
                f"Checkpoint '{resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(output_dir, path))
            global_step = int(path.split("-")[1])

            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch
    else:
        initial_global_step = 0

    if accelerator.is_main_process:
        print("Initial Learning rate is ", optimizer.param_groups[0]['lr'])
        print("global_step will start from ", global_step)

    progress_bar = tqdm(
                            range(initial_global_step, max_train_steps),
                            initial=initial_global_step,
                            desc="Steps",
                            # Only show the progress bar once on each machine.
                            disable=not accelerator.is_local_main_process,
                        )

    

    # Prepare tensorboard log
    writer = SummaryWriter() 


    ################################### Auxiliary Function ################################################################################################
    def encode_clip(pixel_values, prompt):
        ''' Encoder hidden states input source
            pixel_values:   first frame pixel information
            prompt:         language prompt with takenized
        '''

        ########################################## Prepare the Text Embedding #####################################################
        # pixel_values is in the range [-1, 1]
        pixel_values = resize_with_antialiasing(pixel_values, (224, 224))
        pixel_values = (pixel_values + 1.0) / 2.0   # [-1, 1] -> [0, 1]

        # Normalize the image with for CLIP input
        pixel_values = feature_extractor(
            images=pixel_values,
            do_normalize=True,
            do_center_crop=False,
            do_resize=False,
            do_rescale=False,
            return_tensors="pt",
        ).pixel_values

        # The following is the same as _encode_image in SVD pipeline
        pixel_values = pixel_values.to(device=accelerator.device, dtype=weight_dtype)
        image_embeddings = image_encoder(pixel_values).image_embeds
        image_embeddings = image_embeddings.unsqueeze(1)

        # duplicate image embeddings for each generation per prompt, using mps friendly method
        bs_embed, seq_len, _ = image_embeddings.shape
        image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
        encoder_hidden_states = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
        #############################################################################################################################



        ########################################## Prepare the Text embedding if needed #############################################
        if config["use_text"]:
            text_embeddings = text_encoder(prompt)[0]
            
            # Concat two embeddings together on dim 1
            encoder_hidden_states = torch.cat((text_embeddings, encoder_hidden_states), dim=1)      # 目前先用text_embeddings 再用encoder_hidden_states感觉好一点

            # Layer norm on the last dim
            layer_norm = nn.LayerNorm((78, 1024)).to(device=accelerator.device, dtype=weight_dtype)
            encoder_hidden_states_norm = layer_norm(encoder_hidden_states)

            # Return
            return encoder_hidden_states_norm

        else:   # Just return back default on
            return encoder_hidden_states
        #############################################################################################################################

    #########################################################################################################################################################


    ############################################################################################################################
    # For the training, we mimic the code from test2image in diffusers  TODO: check the data loader conflict
    for epoch in range(first_epoch, num_train_epochs):
        controlnet.train()
        train_loss = 0.0
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(controlnet):
                # batch is a dictionary with video_frames and controlnet_condition
                video_frames = batch["video_frames"].to(weight_dtype).to(accelerator.device, non_blocking=True)        # [-1, 1] range
                condition_img = batch["controlnet_condition"].to(dtype=weight_dtype)        # [0, 1] range
                reflected_motion_bucket_id = batch["reflected_motion_bucket_id"]
                controlnet_image_index = batch["controlnet_image_index"]
                prompt = batch["prompt"]


                # Images to VAE latent space
                latents = tensor_to_vae_latent(video_frames, vae)       # For all frames
                

                ##################################### Add Noise ########################################
                bsz, num_frames = latents.shape[:2]
                

                # Encode the first frame
                conditional_pixel_values = video_frames[:, 0, :, :, :]      # First frame
                # Following AnimateSomething, we use constant to repace cond_sigmas
                conditional_pixel_values = conditional_pixel_values + torch.randn_like(conditional_pixel_values) * train_noise_aug_strength # cond_sigmas
                conditional_latents = vae.encode(conditional_pixel_values).latent_dist.mode()   
                conditional_latents = repeat(conditional_latents, 'b c h w->b f c h w', f=num_frames)       # conditional_latents没有noise的成分的


                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                sigmas = rand_log_normal(shape=[bsz,], loc=config["noise_mean"], scale=config["noise_std"]).to(weight_dtype).to(latents.device)      # TODO: 我觉得noise这块,sigma算法是最不确定是否正确的地方
                sigmas = sigmas[:, None, None, None, None]
                noisy_latents = latents + torch.randn_like(latents) * sigmas
                inp_noisy_latents = noisy_latents / ((sigmas**2 + 1) ** 0.5)        # multiplied by c_in in paper


                # For the encoder hidden states based on the first frame and prompt
                encoder_hidden_states = encode_clip(video_frames[:, 0, :, :, :].float(), prompt)     # First Frame + Text Prompt


                # Conditioning dropout to support classifier-free guidance during inference. For more details
                # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800.
                if conditioning_dropout_prob != 0:
                    random_p = torch.rand(bsz, device=latents.device, generator=generator)

                    # Sample masks for the encoder_hidden_states (to replace prompts in InstructPix2Pix). 
                    prompt_mask = random_p < 2 * conditioning_dropout_prob
                    prompt_mask = prompt_mask.reshape(bsz, 1, 1)
                    # Final encoder_hidden_states conditioning.
                    null_conditioning = torch.zeros_like(encoder_hidden_states) # encoder_hidden_states has already been used with .unsqueeze(1)
                    encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states) 

                    # Sample masks for the original image latents.
                    image_mask_dtype = conditional_latents.dtype
                    image_mask = 1 - ((random_p >= conditioning_dropout_prob).to(image_mask_dtype) * (random_p < 3 * conditioning_dropout_prob).to(image_mask_dtype))
                    image_mask = image_mask.reshape(bsz, 1, 1, 1)

                    # Final image conditioning.
                    conditional_latents = image_mask * conditional_latents   

                # The Concatenation is move downward with the masking feature


                # GT noise
                target = latents
                ##########################################################################################


                ################################ Other Embedding and Conditioning ###################################
                reflected_motion_bucket_id = torch.sum(reflected_motion_bucket_id)/len(reflected_motion_bucket_id)
                reflected_motion_bucket_id = int(reflected_motion_bucket_id.cpu().detach().numpy())
                # print("Training reflected_motion_bucket_id is ", reflected_motion_bucket_id)

                added_time_ids = get_add_time_ids(
                                                    unet_config,
                                                    expected_add_embed_dim,
                                                    process_fps,
                                                    reflected_motion_bucket_id,
                                                    train_noise_aug_strength,       # Note: noise strength
                                                    weight_dtype,
                                                    train_batch_size,
                                                    num_videos_per_prompt,
                                                )       # The same as SVD pipeline's _get_add_time_ids
                added_time_ids = added_time_ids.to(accelerator.device)

                timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]).to(accelerator.device)
                ##########################################################################################



                ################################### Get ControlNet Output ###################################

                # Transform controlnet_image_index to the data format we want
                controlnet_image_index = list(controlnet_image_index.cpu().detach().numpy()[0])
                assert condition_img.shape[1] >= len(controlnet_image_index)  

                # Designing the 0/1 mask for Sparse Conditioning
                controlnet_conditioning_mask_shape = list(condition_img.shape)
                controlnet_conditioning_mask_shape[2] = 1       # frame dim
                controlnet_conditioning_mask = torch.zeros(controlnet_conditioning_mask_shape).to(dtype=weight_dtype).to(accelerator.device)
                controlnet_conditioning_mask[:, controlnet_image_index] = 1


                # Add vae latent mask to controlnet noise
                if config["mask_controlnet_vae"]:
                    b, f, c, h, w = conditional_latents.shape

                    # Create a mask: Value less than the threshold is set to be True
                    mask = torch.rand((b, f, 1, h, w), device=accelerator.device) < (1-config["mask_proportion"])      # channel sync
                    # mask[:,0,:,:,:] = 1     # For the first frame, we still keep it

                    # Multiply to the conditional latents, we will just make the mean and variance zero to present those with zero masking
                    masked_conditional_latents = conditional_latents * mask
                    controlnet_inp_noisy_latents = torch.cat([inp_noisy_latents, masked_conditional_latents], dim=2)
                else:
                    controlnet_inp_noisy_latents = torch.cat([inp_noisy_latents, conditional_latents], dim=2)


                # VAE encode
                controlnet_cond = condition_img.flatten(0, 1)
                controlnet_cond = vae.encode(controlnet_cond).latent_dist.mode()


                down_block_res_samples, mid_block_res_sample = controlnet(
                    sample = controlnet_inp_noisy_latents,          
                    timestep = timesteps,
                    encoder_hidden_states = encoder_hidden_states,     
                    added_time_ids = added_time_ids,
                    controlnet_cond = controlnet_cond,
                    return_dict = False,
                    conditioning_scale = config["outer_conditioning_scale"],
                    inner_conditioning_scale = config["inner_conditioning_scale"],
                    guess_mode = False,         # No Guess Mode
                )   

                #############################################################################################



                ###################################### Predict Noise ########################################
                # Add vae latent mask to controlnet noise
                if config["mask_unet_vae"]:
                    b, f, c, h, w = conditional_latents.shape

                    # Create a mask
                    mask = torch.rand((b, f, 1, h, w), device=accelerator.device) < (1-config["mask_proportion"])      # channel sync
                    # mask[:,0,:,:,:] = 1     # For the first frame, we still keep it

                    # Multiply to the conditional latents, we will just make the mean and variance zero to present those with zero masking
                    if not config["mask_controlnet_vae"]:  
                        masked_conditional_latents = conditional_latents * mask
                    unet_inp_noisy_latents = torch.cat([inp_noisy_latents, masked_conditional_latents], dim=2)
                else:
                    unet_inp_noisy_latents = torch.cat([inp_noisy_latents, conditional_latents], dim=2)

                # Add with controlnet middle output layers
                model_pred = unet(
                                    unet_inp_noisy_latents,
                                    timesteps, 
                                    encoder_hidden_states, 
                                    added_time_ids = added_time_ids,
                                    down_block_additional_residuals = [
                                        sample.to(dtype=weight_dtype) for sample in down_block_res_samples
                                    ],
                                    mid_block_additional_residual = mid_block_res_sample.to(dtype=weight_dtype),
                                ).sample    


                # Denoise the latents
                c_out = -sigmas / ((sigmas**2 + 1)**0.5)
                c_skip = 1 / (sigmas**2 + 1)
                denoised_latents = model_pred * c_out + c_skip * noisy_latents  # What our loss will optimize with
                weighing = (1 + sigmas ** 2) * (sigmas**-2.0)
                ##########################################################################################


                ############################### Calculate Loss and Update Optimizer #######################
                # MSE loss
                loss = torch.mean(
                    (  weighing.float() * (denoised_latents.float() - target.float())**2 ).reshape(target.shape[0], -1),
                    dim=1,
                )
                loss = loss.mean()

                # Gather the losses across all processes for logging (if we use distributed training).
                avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
                train_loss += avg_loss.item() / gradient_accumulation_steps

                # Update Tensorboard
                writer.add_scalar('Loss/train-Loss-Step', avg_loss.item()/ gradient_accumulation_steps, global_step)        # 我觉得loss的report就用这个avg_loss就行了
                

                # Backpropagate
                accelerator.backward(loss)
                if accelerator.sync_gradients:  # For ControlNet
                    params_to_clip = controlnet.parameters()
                    accelerator.clip_grad_norm_(params_to_clip, max_grad_norm)
                optimizer.step()
                lr_scheduler.step()     # I think constant will take no influence here
                optimizer.zero_grad(set_to_none=True)
                ##########################################################################################


            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0

                ########################################## Checkpoints #########################################
                if global_step != 0 and global_step % checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        start = time.time()
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if checkpoints_total_limit is not None:
                            checkpoints = os.listdir(output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
                        print("Save time use " + str(time.time() - start) + " s")
                ########################################################################################################


            # Update Log
            logs = {"step_loss": loss.detach().item()}
            progress_bar.set_postfix(**logs)


           ##################################### Validation per XXX iterations #######################################
            if accelerator.is_main_process:
                if global_step > -1 and global_step % validation_step == 0:         # Fixed 100 steps to validate
                    
                    log_validation(
                                    vae,
                                    unet,
                                    controlnet,
                                    image_encoder,
                                    text_encoder,
                                    tokenizer,
                                    config,
                                    accelerator,
                                    weight_dtype,
                                    global_step,
                                    use_ambiguous_prompt = config["mix_ambiguous"],
                                )
                                
            ###############################################################################################################

            # Update Steps and Break if needed      global step should be updated together
            global_step += 1

            if global_step >= max_train_steps:
                break
    
    ############################################################################################################################


if __name__ == "__main__":
    args = parse_args()

    config = OmegaConf.load(args.config_path)
    main(config)