ChatVC / app.py
Hilley's picture
Update app.py
5de69a4 verified
import spaces
import os
import random
import argparse
import torch
import gradio as gr
import numpy as np
import ChatTTS
import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter
import soundfile
from tts_voice import tts_order_voice
import edge_tts
import tempfile
import anyio
print("loading ChatTTS model...")
chat = ChatTTS.Chat()
chat.load_models()
def generate_seed():
new_seed = random.randint(1, 100000000)
return {
"__type__": "update",
"value": new_seed
}
@spaces.GPU
def chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, output_path=None):
torch.manual_seed(audio_seed_input)
rand_spk = torch.randn(768)
params_infer_code = {
'spk_emb': rand_spk,
'temperature': temperature,
'top_P': top_P,
'top_K': top_K,
}
params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'}
torch.manual_seed(text_seed_input)
if refine_text_flag:
if refine_text_input:
params_refine_text['prompt'] = refine_text_input
text = chat.infer(text,
skip_refine_text=False,
refine_text_only=True,
params_refine_text=params_refine_text,
params_infer_code=params_infer_code
)
print("Text has been refined!")
wav = chat.infer(text,
skip_refine_text=True,
params_refine_text=params_refine_text,
params_infer_code=params_infer_code
)
audio_data = np.array(wav[0]).flatten()
sample_rate = 24000
text_data = text[0] if isinstance(text, list) else text
if output_path is None:
return [(sample_rate, audio_data), text_data]
else:
soundfile.write(output_path, audio_data, sample_rate)
# OpenVoice
ckpt_base_en = 'checkpoints/base_speakers/EN'
ckpt_converter_en = 'checkpoints/converter'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
base_speaker_tts = BaseSpeakerTTS(f'{ckpt_base_en}/config.json', device=device)
base_speaker_tts.load_ckpt(f'{ckpt_base_en}/checkpoint.pth')
tone_color_converter = ToneColorConverter(f'{ckpt_converter_en}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter_en}/checkpoint.pth')
def generate_audio(text, audio_ref, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input):
source_se = torch.load(f'{ckpt_base_en}/en_default_se.pth').to(device)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the base speaker tts
src_path = "tmp.wav"
chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, src_path)
print("Ready for voice cloning!")
source_se, audio_name = se_extractor.get_se(src_path, tone_color_converter, target_dir='processed', vad=True)
print("Get source segment!")
# Run the tone color converter
encode_message = "@Hilley"
# convert from file
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
'''
# convert from data
src_path = None
sample_rate, audio = chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, src_path)[0]
print("Ready for voice cloning!")
tone_color_converter.convert_data(
audio=audio,
sample_rate=sample_rate,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
'''
print("Finished!")
return "output.wav"
def vc_en(text, audio_ref, style_mode):
if style_mode=="default":
source_se = torch.load(f'{ckpt_base_en}/en_default_se.pth').to(device)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the base speaker tts
src_path = "tmp.wav"
base_speaker_tts.tts(text, src_path, speaker='default', language='English', speed=1.0)
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
else:
source_se = torch.load(f'{ckpt_base_en}/en_style_se.pth').to(device)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the base speaker tts
src_path = "tmp.wav"
base_speaker_tts.tts(text, src_path, speaker=style_mode, language='English', speed=0.9)
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
return "output.wav"
language_dict = tts_order_voice
base_speaker = "base_audio.mp3"
source_se, audio_name = se_extractor.get_se(base_speaker, tone_color_converter, vad=True)
async def text_to_speech_edge(text, audio_ref, language_code):
voice = language_dict[language_code]
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
reference_speaker = audio_ref
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
save_path = "output.wav"
# Run the tone color converter
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=tmp_path,
src_se=source_se,
tgt_se=target_se,
output_path=save_path,
message=encode_message)
return "output.wav"
with gr.Blocks() as demo:
# gr.Markdown("# ❣️❣️")
default_text = "Today a man knocked on my door and asked for a small donation toward the local swimming pool. I gave him a glass of water."
text_input = gr.Textbox(label="Input Text", lines=4, placeholder="Please Input Text...", value=default_text)
voice_ref = gr.Audio(label="Reference Audio", type="filepath", value="base_audio.mp3")
with gr.Tab("💕Super Natural"):
default_refine_text = "[oral_2][laugh_0][break_6]"
refine_text_checkbox = gr.Checkbox(label="Refine text", info="'oral' means add filler words, 'laugh' means add laughter, and 'break' means add a pause. (0-10) ", value=True)
refine_text_input = gr.Textbox(label="Refine Prompt", lines=1, placeholder="Please Refine Prompt...", value=default_refine_text)
with gr.Row():
temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.3, label="Audio temperature")
top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="top_P")
top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_K")
with gr.Row():
audio_seed_input = gr.Number(value=42, label="Speaker Seed")
generate_audio_seed = gr.Button("\U0001F3B2")
text_seed_input = gr.Number(value=42, label="Text Seed")
generate_text_seed = gr.Button("\U0001F3B2")
generate_button = gr.Button("Generate!")
#text_output = gr.Textbox(label="Refined Text", interactive=False)
audio_output = gr.Audio(label="Output Audio")
generate_audio_seed.click(generate_seed,
inputs=[],
outputs=audio_seed_input)
generate_text_seed.click(generate_seed,
inputs=[],
outputs=text_seed_input)
generate_button.click(generate_audio,
inputs=[text_input, voice_ref, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox, refine_text_input],
outputs=audio_output)
with gr.Tab("💕Emotion Control"):
emo_pick = gr.Dropdown(label="Emotion", info="🙂default😊friendly🤫whispering😄cheerful😱terrified😡angry😢sad", choices=["default", "friendly", "whispering", "cheerful", "terrified", "angry", "sad"], value="default")
generate_button_emo = gr.Button("Generate!", variant="primary")
audio_emo = gr.Audio(label="Output Audio", type="filepath")
generate_button_emo.click(vc_en, [text_input, voice_ref, emo_pick], audio_emo)
with gr.Tab("💕multilingual"):
language = gr.Dropdown(choices=list(language_dict.keys()), value=list(language_dict.keys())[15], label="Language")
generate_button_ml = gr.Button("Generate!", variant="primary")
audio_ml = gr.Audio(label="Output Audio", type="filepath")
generate_button_ml.click(text_to_speech_edge, [text_input, voice_ref, language], audio_ml)
parser = argparse.ArgumentParser(description='ChatVC demo Launch')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=8080, help='Server port')
args = parser.parse_args()
# demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)
if __name__ == '__main__':
demo.launch()