Spaces:
Sleeping
Sleeping
import numpy as np | |
from PIL import Image | |
from huggingface_hub import snapshot_download | |
from leffa.transform import LeffaTransform | |
from leffa.model import LeffaModel | |
from leffa.inference import LeffaInference | |
from utils.garment_agnostic_mask_predictor import AutoMasker | |
from utils.densepose_predictor import DensePosePredictor | |
from utils.utils import resize_and_center | |
import spaces | |
import requests | |
from io import BytesIO | |
import gradio as gr | |
print("Imports done, downloading the model...") | |
# Download checkpoints | |
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts") | |
mask_predictor = AutoMasker( | |
densepose_path="./ckpts/densepose", | |
schp_path="./ckpts/schp", | |
) | |
densepose_predictor = DensePosePredictor( | |
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml", | |
weights_path="./ckpts/densepose/model_final_162be9.pkl", | |
) | |
vt_model = LeffaModel( | |
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting", | |
pretrained_model="./ckpts/virtual_tryon.pth", | |
) | |
vt_inference = LeffaInference(model=vt_model) | |
pt_model = LeffaModel( | |
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1", | |
pretrained_model="./ckpts/pose_transfer.pth", | |
) | |
pt_inference = LeffaInference(model=pt_model) | |
print("Model downloaded, ready to serve!") | |
def leffa_predict(src_image_path, ref_image_path, control_type): | |
assert control_type in [ | |
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type) | |
if isinstance(src_image_path, str): | |
src_image = Image.open(src_image_path) | |
else: | |
src_image = src_image_path | |
if isinstance(ref_image_path, str): | |
ref_image = Image.open(ref_image_path) | |
else: | |
ref_image = ref_image_path | |
src_image = resize_and_center(src_image, 768, 1024) | |
ref_image = resize_and_center(ref_image, 768, 1024) | |
src_image_array = np.array(src_image) | |
ref_image_array = np.array(ref_image) | |
# Mask | |
if control_type == "virtual_tryon": | |
src_image = src_image.convert("RGB") | |
mask = mask_predictor(src_image, "upper")["mask"] | |
elif control_type == "pose_transfer": | |
mask = Image.fromarray(np.ones_like(src_image_array) * 255) | |
# DensePose | |
src_image_iuv_array = densepose_predictor.predict_iuv(src_image_array) | |
src_image_seg_array = densepose_predictor.predict_seg(src_image_array) | |
src_image_iuv = Image.fromarray(src_image_iuv_array) | |
src_image_seg = Image.fromarray(src_image_seg_array) | |
if control_type == "virtual_tryon": | |
densepose = src_image_seg | |
elif control_type == "pose_transfer": | |
densepose = src_image_iuv | |
# Leffa | |
transform = LeffaTransform() | |
data = { | |
"src_image": [src_image], | |
"ref_image": [ref_image], | |
"mask": [mask], | |
"densepose": [densepose], | |
} | |
data = transform(data) | |
if control_type == "virtual_tryon": | |
inference = vt_inference | |
elif control_type == "pose_transfer": | |
inference = pt_inference | |
output = inference(data) | |
gen_image = output["generated_image"][0] | |
# gen_image.save("gen_image.png") | |
return np.array(gen_image) | |
def leffa_predict_vt(src_image_path, ref_image_path): | |
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon") | |
def leffa_predict_vt_image_url(person_url, garment_url): | |
if not person_url or not garment_url: | |
return None | |
src_image = fetch_image_from_url(person_url) | |
if not src_image: | |
return None | |
print("fetched person image") | |
ref_image = fetch_image_from_url(garment_url) | |
if not ref_image: | |
return None | |
print("fetched garment image") | |
return leffa_predict(src_image, ref_image, "virtual_tryon") | |
def leffa_predict_pt(src_image_path, ref_image_path): | |
return leffa_predict(src_image_path, ref_image_path, "pose_transfer") | |
def fetch_image_from_url(url): | |
try: | |
response = requests.get(url) | |
img = Image.open(BytesIO(response.content)) | |
return img | |
except Exception as e: | |
print(e) | |
return None | |
def handle_image_input(image_input): | |
if image_input.startswith('http'): | |
return fetch_image_from_url(image_input) | |
else: | |
return Image.open(image_input) | |
# if __name__ == "__main__": | |
# # import sys | |
# # src_image_path = sys.argv[1] | |
# # ref_image_path = sys.argv[2] | |
# # control_type = sys.argv[3] | |
# # leffa_predict(src_image_path, ref_image_path, control_type) | |
# title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation" | |
# link = "[📚 Paper](https://arxiv.org/abs/2412.08486) - [🔥 Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [🤗 Model](https://huggingface.co/franciszzj/Leffa)" | |
# description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)." | |
# note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD, and pose transfer uses DeepFashion." | |
# with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo: | |
# gr.Markdown(title) | |
# gr.Markdown(link) | |
# gr.Markdown(description) | |
# with gr.Tab("Control Appearance (Virtual Try-on)"): | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown("#### Person Image") | |
# vt_src_image = gr.Image( | |
# sources=["upload", "url"], | |
# type="filepath", | |
# label="Person Image", | |
# width=512, | |
# height=512, | |
# ) | |
# gr.Examples( | |
# inputs=vt_src_image, | |
# examples_per_page=5, | |
# examples=["./ckpts/examples/person1/01350_00.jpg", | |
# "./ckpts/examples/person1/01376_00.jpg", | |
# "./ckpts/examples/person1/01416_00.jpg", | |
# "./ckpts/examples/person1/05976_00.jpg", | |
# "./ckpts/examples/person1/06094_00.jpg",], | |
# ) | |
# with gr.Column(): | |
# gr.Markdown("#### Garment Image") | |
# vt_ref_image = gr.Image( | |
# sources=["upload", "url"], | |
# type="filepath", | |
# label="Garment Image", | |
# width=512, | |
# height=512, | |
# ) | |
# gr.Examples( | |
# inputs=vt_ref_image, | |
# examples_per_page=5, | |
# examples=["./ckpts/examples/garment/01449_00.jpg", | |
# "./ckpts/examples/garment/01486_00.jpg", | |
# "./ckpts/examples/garment/01853_00.jpg", | |
# "./ckpts/examples/garment/02070_00.jpg", | |
# "./ckpts/examples/garment/03553_00.jpg",], | |
# ) | |
# with gr.Column(): | |
# gr.Markdown("#### Generated Image") | |
# vt_gen_image = gr.Image( | |
# label="Generated Image", | |
# width=512, | |
# height=512, | |
# ) | |
# with gr.Row(): | |
# vt_gen_button = gr.Button("Generate") | |
# vt_gen_button.click(fn=leffa_predict_vt, inputs=[ | |
# vt_src_image, vt_ref_image], outputs=[vt_gen_image]) | |
# with gr.Tab("Control Pose (Pose Transfer)"): | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown("#### Person Image") | |
# pt_ref_image = gr.Image( | |
# sources=["upload"], | |
# type="filepath", | |
# label="Person Image", | |
# width=512, | |
# height=512, | |
# ) | |
# gr.Examples( | |
# inputs=pt_ref_image, | |
# examples_per_page=5, | |
# examples=["./ckpts/examples/person1/01350_00.jpg", | |
# "./ckpts/examples/person1/01376_00.jpg", | |
# "./ckpts/examples/person1/01416_00.jpg", | |
# "./ckpts/examples/person1/05976_00.jpg", | |
# "./ckpts/examples/person1/06094_00.jpg",], | |
# ) | |
# with gr.Column(): | |
# gr.Markdown("#### Target Pose Person Image") | |
# pt_src_image = gr.Image( | |
# sources=["upload"], | |
# type="filepath", | |
# label="Target Pose Person Image", | |
# width=512, | |
# height=512, | |
# ) | |
# gr.Examples( | |
# inputs=pt_src_image, | |
# examples_per_page=5, | |
# examples=["./ckpts/examples/person2/01850_00.jpg", | |
# "./ckpts/examples/person2/01875_00.jpg", | |
# "./ckpts/examples/person2/02532_00.jpg", | |
# "./ckpts/examples/person2/02902_00.jpg", | |
# "./ckpts/examples/person2/05346_00.jpg",], | |
# ) | |
# with gr.Column(): | |
# gr.Markdown("#### Generated Image") | |
# pt_gen_image = gr.Image( | |
# label="Generated Image", | |
# width=512, | |
# height=512, | |
# ) | |
# with gr.Row(): | |
# pose_transfer_gen_button = gr.Button("Generate") | |
# pose_transfer_gen_button.click(fn=leffa_predict_pt, inputs=[ | |
# pt_src_image, pt_ref_image], outputs=[pt_gen_image]) | |
# gr.Markdown(note) | |
# demo.launch(share=True, server_port=7860) | |
def create_demo(): | |
title = "## Virtual Try-on with URLs" | |
description = "Enter URLs for both the person image and the garment image to generate a virtual try-on result." | |
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink)) as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
person_url = gr.Textbox( | |
label="Person Image URL", | |
placeholder="Enter URL of the person image..." | |
) | |
garment_url = gr.Textbox( | |
label="Garment Image URL", | |
placeholder="Enter URL of the garment image..." | |
) | |
# Example URLs | |
gr.Examples( | |
inputs=[person_url, garment_url], | |
examples=[ | |
["https://example.com/person1.jpg", "https://example.com/garment1.jpg"], | |
["https://example.com/person2.jpg", "https://example.com/garment2.jpg"], | |
], | |
label="Example URLs" | |
) | |
generate_btn = gr.Button("Generate Try-on") | |
with gr.Column(): | |
output_image = gr.Image( | |
label="Generated Result", | |
width=512, | |
height=512 | |
) | |
generate_btn.click( | |
fn=leffa_predict_vt_image_url, | |
inputs=[person_url, garment_url], | |
outputs=output_image | |
) | |
gr.Markdown("Note: This model is trained solely on academic datasets (VITON-HD).") | |
return demo | |
if __name__ == "__main__": | |
demo = create_demo() | |
demo.launch(share=True, server_port=7860) |