import numpy as np from PIL import Image from huggingface_hub import snapshot_download from leffa.transform import LeffaTransform from leffa.model import LeffaModel from leffa.inference import LeffaInference from utils.garment_agnostic_mask_predictor import AutoMasker from utils.densepose_predictor import DensePosePredictor from utils.utils import resize_and_center import spaces import gradio as gr # Download checkpoints snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts") mask_predictor = AutoMasker( densepose_path="./ckpts/densepose", schp_path="./ckpts/schp", ) densepose_predictor = DensePosePredictor( config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml", weights_path="./ckpts/densepose/model_final_162be9.pkl", ) vt_model = LeffaModel( pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting", pretrained_model="./ckpts/virtual_tryon.pth", ) vt_inference = LeffaInference(model=vt_model) pt_model = LeffaModel( pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1", pretrained_model="./ckpts/pose_transfer.pth", ) pt_inference = LeffaInference(model=pt_model) @spaces.GPU def leffa_predict(src_image_path, ref_image_path, control_type): assert control_type in [ "virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type) src_image = Image.open(src_image_path) ref_image = Image.open(ref_image_path) src_image = resize_and_center(src_image, 768, 1024) ref_image = resize_and_center(ref_image, 768, 1024) src_image_array = np.array(src_image) ref_image_array = np.array(ref_image) # Mask if control_type == "virtual_tryon": src_image = src_image.convert("RGB") mask = mask_predictor(src_image, "upper")["mask"] elif control_type == "pose_transfer": mask = Image.fromarray(np.ones_like(src_image_array) * 255) # DensePose src_image_iuv_array = densepose_predictor.predict_iuv(src_image_array) src_image_seg_array = densepose_predictor.predict_seg(src_image_array) src_image_iuv = Image.fromarray(src_image_iuv_array) src_image_seg = Image.fromarray(src_image_seg_array) if control_type == "virtual_tryon": densepose = src_image_seg elif control_type == "pose_transfer": densepose = src_image_iuv # Leffa transform = LeffaTransform() data = { "src_image": [src_image], "ref_image": [ref_image], "mask": [mask], "densepose": [densepose], } data = transform(data) if control_type == "virtual_tryon": inference = vt_inference elif control_type == "pose_transfer": inference = pt_inference output = inference(data) gen_image = output["generated_image"][0] # gen_image.save("gen_image.png") return np.array(gen_image) @spaces.GPU def leffa_predict_vt(src_image_path, ref_image_path): return leffa_predict(src_image_path, ref_image_path, "virtual_tryon") @spaces.GPU def leffa_predict_vt_image_url(src_image_path, ref_image_path): src_image = fetch_image_from_url(src_image_path) print("fetched person image") ref_image = fetch_image_from_url(ref_image_path) print("fetched garment image") return leffa_predict(src_image, ref_image, "virtual_tryon") @spaces.GPU def leffa_predict_pt(src_image_path, ref_image_path): return leffa_predict(src_image_path, ref_image_path, "pose_transfer") def fetch_image_from_url(url): try: response = requests.get(url) img = Image.open(BytesIO(response.content)) return img except Exception as e: print(e) return None def handle_image_input(image_input): if image_input.startswith('http'): return fetch_image_from_url(image_input) else: return Image.open(image_input) # if __name__ == "__main__": # # import sys # # src_image_path = sys.argv[1] # # ref_image_path = sys.argv[2] # # control_type = sys.argv[3] # # leffa_predict(src_image_path, ref_image_path, control_type) # title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation" # link = "[📚 Paper](https://arxiv.org/abs/2412.08486) - [🔥 Demo](https://huggingface.co/spaces/franciszzj/Leffa) - [🤗 Model](https://huggingface.co/franciszzj/Leffa)" # description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)." # note = "Note: The models used in the demo are trained solely on academic datasets. Virtual try-on uses VITON-HD, and pose transfer uses DeepFashion." # with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo: # gr.Markdown(title) # gr.Markdown(link) # gr.Markdown(description) # with gr.Tab("Control Appearance (Virtual Try-on)"): # with gr.Row(): # with gr.Column(): # gr.Markdown("#### Person Image") # vt_src_image = gr.Image( # sources=["upload", "url"], # type="filepath", # label="Person Image", # width=512, # height=512, # ) # gr.Examples( # inputs=vt_src_image, # examples_per_page=5, # examples=["./ckpts/examples/person1/01350_00.jpg", # "./ckpts/examples/person1/01376_00.jpg", # "./ckpts/examples/person1/01416_00.jpg", # "./ckpts/examples/person1/05976_00.jpg", # "./ckpts/examples/person1/06094_00.jpg",], # ) # with gr.Column(): # gr.Markdown("#### Garment Image") # vt_ref_image = gr.Image( # sources=["upload", "url"], # type="filepath", # label="Garment Image", # width=512, # height=512, # ) # gr.Examples( # inputs=vt_ref_image, # examples_per_page=5, # examples=["./ckpts/examples/garment/01449_00.jpg", # "./ckpts/examples/garment/01486_00.jpg", # "./ckpts/examples/garment/01853_00.jpg", # "./ckpts/examples/garment/02070_00.jpg", # "./ckpts/examples/garment/03553_00.jpg",], # ) # with gr.Column(): # gr.Markdown("#### Generated Image") # vt_gen_image = gr.Image( # label="Generated Image", # width=512, # height=512, # ) # with gr.Row(): # vt_gen_button = gr.Button("Generate") # vt_gen_button.click(fn=leffa_predict_vt, inputs=[ # vt_src_image, vt_ref_image], outputs=[vt_gen_image]) # with gr.Tab("Control Pose (Pose Transfer)"): # with gr.Row(): # with gr.Column(): # gr.Markdown("#### Person Image") # pt_ref_image = gr.Image( # sources=["upload"], # type="filepath", # label="Person Image", # width=512, # height=512, # ) # gr.Examples( # inputs=pt_ref_image, # examples_per_page=5, # examples=["./ckpts/examples/person1/01350_00.jpg", # "./ckpts/examples/person1/01376_00.jpg", # "./ckpts/examples/person1/01416_00.jpg", # "./ckpts/examples/person1/05976_00.jpg", # "./ckpts/examples/person1/06094_00.jpg",], # ) # with gr.Column(): # gr.Markdown("#### Target Pose Person Image") # pt_src_image = gr.Image( # sources=["upload"], # type="filepath", # label="Target Pose Person Image", # width=512, # height=512, # ) # gr.Examples( # inputs=pt_src_image, # examples_per_page=5, # examples=["./ckpts/examples/person2/01850_00.jpg", # "./ckpts/examples/person2/01875_00.jpg", # "./ckpts/examples/person2/02532_00.jpg", # "./ckpts/examples/person2/02902_00.jpg", # "./ckpts/examples/person2/05346_00.jpg",], # ) # with gr.Column(): # gr.Markdown("#### Generated Image") # pt_gen_image = gr.Image( # label="Generated Image", # width=512, # height=512, # ) # with gr.Row(): # pose_transfer_gen_button = gr.Button("Generate") # pose_transfer_gen_button.click(fn=leffa_predict_pt, inputs=[ # pt_src_image, pt_ref_image], outputs=[pt_gen_image]) # gr.Markdown(note) # demo.launch(share=True, server_port=7860) def create_demo(): title = "## Virtual Try-on with URLs" description = "Enter URLs for both the person image and the garment image to generate a virtual try-on result." with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink)) as demo: gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(): person_url = gr.Textbox( label="Person Image URL", placeholder="Enter URL of the person image..." ) garment_url = gr.Textbox( label="Garment Image URL", placeholder="Enter URL of the garment image..." ) # Example URLs gr.Examples( inputs=[person_url, garment_url], examples=[ ["https://example.com/person1.jpg", "https://example.com/garment1.jpg"], ["https://example.com/person2.jpg", "https://example.com/garment2.jpg"], ], label="Example URLs" ) generate_btn = gr.Button("Generate Try-on") with gr.Column(): output_image = gr.Image( label="Generated Result", width=512, height=512 ) generate_btn.click( fn=virtual_tryon_from_urls, inputs=[person_url, garment_url], outputs=output_image ) gr.Markdown("Note: This model is trained solely on academic datasets (VITON-HD).") return demo if __name__ == "__main__": demo = create_demo() demo.launch(share=True, server_port=7860)