File size: 37,119 Bytes
1850baa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 |
import os
import random
import argparse
import json
import itertools
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from transformers import CLIPImageProcessor
from accelerate import Accelerator
from accelerate.utils import ProjectConfiguration
from diffusers import AutoencoderKL, DDPMScheduler
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, CLIPTextModelWithProjection
from src.unet_hacked_tryon import UNet2DConditionModel
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from ip_adapter.ip_adapter import Resampler
from diffusers.utils.import_utils import is_xformers_available
from typing import Literal, Tuple,List
import torch.utils.data as data
import math
from tqdm.auto import tqdm
from diffusers.training_utils import compute_snr
import torchvision.transforms.functional as TF
class VitonHDDataset(data.Dataset):
def __init__(
self,
dataroot_path: str,
phase: Literal["train", "test"],
order: Literal["paired", "unpaired"] = "paired",
size: Tuple[int, int] = (512, 384),
):
super(VitonHDDataset, self).__init__()
self.dataroot = dataroot_path
self.phase = phase
self.height = size[0]
self.width = size[1]
self.size = size
self.norm = transforms.Normalize([0.5], [0.5])
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
self.transform2D = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)
self.toTensor = transforms.ToTensor()
with open(
os.path.join(dataroot_path, phase, "vitonhd_" + phase + "_tagged.json"), "r"
) as file1:
data1 = json.load(file1)
annotation_list = [
# "colors",
# "textures",
"sleeveLength",
"neckLine",
"item",
]
self.annotation_pair = {}
for k, v in data1.items():
for elem in v:
annotation_str = ""
for template in annotation_list:
for tag in elem["tag_info"]:
if (
tag["tag_name"] == template
and tag["tag_category"] is not None
):
annotation_str += tag["tag_category"]
annotation_str += " "
self.annotation_pair[elem["file_name"]] = annotation_str
self.order = order
self.toTensor = transforms.ToTensor()
im_names = []
c_names = []
dataroot_names = []
if phase == "train":
filename = os.path.join(dataroot_path, f"{phase}_pairs.txt")
else:
filename = os.path.join(dataroot_path, f"{phase}_pairs.txt")
with open(filename, "r") as f:
for line in f.readlines():
if phase == "train":
im_name, _ = line.strip().split()
c_name = im_name
else:
if order == "paired":
im_name, _ = line.strip().split()
c_name = im_name
else:
im_name, c_name = line.strip().split()
im_names.append(im_name)
c_names.append(c_name)
dataroot_names.append(dataroot_path)
self.im_names = im_names
self.c_names = c_names
self.dataroot_names = dataroot_names
self.flip_transform = transforms.RandomHorizontalFlip(p=1)
self.clip_processor = CLIPImageProcessor()
def __getitem__(self, index):
c_name = self.c_names[index]
im_name = self.im_names[index]
# subject_txt = self.txt_preprocess['train']("shirt")
if c_name in self.annotation_pair:
cloth_annotation = self.annotation_pair[c_name]
else:
cloth_annotation = "shirts"
cloth = Image.open(os.path.join(self.dataroot, self.phase, "cloth", c_name))
im_pil_big = Image.open(
os.path.join(self.dataroot, self.phase, "image", im_name)
).resize((self.width,self.height))
image = self.transform(im_pil_big)
# load parsing image
mask = Image.open(os.path.join(self.dataroot, self.phase, "agnostic-mask", im_name.replace('.jpg','_mask.png'))).resize((self.width,self.height))
mask = self.toTensor(mask)
mask = mask[:1]
densepose_name = im_name
densepose_map = Image.open(
os.path.join(self.dataroot, self.phase, "image-densepose", densepose_name)
)
pose_img = self.toTensor(densepose_map) # [-1,1]
if self.phase == "train":
if random.random() > 0.5:
cloth = self.flip_transform(cloth)
mask = self.flip_transform(mask)
image = self.flip_transform(image)
pose_img = self.flip_transform(pose_img)
if random.random()>0.5:
color_jitter = transforms.ColorJitter(brightness=0.5, contrast=0.3, saturation=0.5, hue=0.5)
fn_idx, b, c, s, h = transforms.ColorJitter.get_params(color_jitter.brightness, color_jitter.contrast, color_jitter.saturation,color_jitter.hue)
image = TF.adjust_contrast(image, c)
image = TF.adjust_brightness(image, b)
image = TF.adjust_hue(image, h)
image = TF.adjust_saturation(image, s)
cloth = TF.adjust_contrast(cloth, c)
cloth = TF.adjust_brightness(cloth, b)
cloth = TF.adjust_hue(cloth, h)
cloth = TF.adjust_saturation(cloth, s)
if random.random() > 0.5:
scale_val = random.uniform(0.8, 1.2)
image = transforms.functional.affine(
image, angle=0, translate=[0, 0], scale=scale_val, shear=0
)
mask = transforms.functional.affine(
mask, angle=0, translate=[0, 0], scale=scale_val, shear=0
)
pose_img = transforms.functional.affine(
pose_img, angle=0, translate=[0, 0], scale=scale_val, shear=0
)
if random.random() > 0.5:
shift_valx = random.uniform(-0.2, 0.2)
shift_valy = random.uniform(-0.2, 0.2)
image = transforms.functional.affine(
image,
angle=0,
translate=[shift_valx * image.shape[-1], shift_valy * image.shape[-2]],
scale=1,
shear=0,
)
mask = transforms.functional.affine(
mask,
angle=0,
translate=[shift_valx * mask.shape[-1], shift_valy * mask.shape[-2]],
scale=1,
shear=0,
)
pose_img = transforms.functional.affine(
pose_img,
angle=0,
translate=[
shift_valx * pose_img.shape[-1],
shift_valy * pose_img.shape[-2],
],
scale=1,
shear=0,
)
mask = 1-mask
cloth_trim = self.clip_processor(images=cloth, return_tensors="pt").pixel_values
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
im_mask = image * mask
pose_img = self.norm(pose_img)
result = {}
result["c_name"] = c_name
result["image"] = image
result["cloth"] = cloth_trim
result["cloth_pure"] = self.transform(cloth)
result["inpaint_mask"] = 1-mask
result["im_mask"] = im_mask
result["caption"] = "model is wearing " + cloth_annotation
result["caption_cloth"] = "a photo of " + cloth_annotation
result["annotation"] = cloth_annotation
result["pose_img"] = pose_img
return result
def __len__(self):
return len(self.im_names)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--pretrained_model_name_or_path",type=str,default="diffusers/stable-diffusion-xl-1.0-inpainting-0.1",required=False,help="Path to pretrained model or model identifier from huggingface.co/models.",)
parser.add_argument("--pretrained_garmentnet_path",type=str,default="stabilityai/stable-diffusion-xl-base-1.0",required=False,help="Path to pretrained model or model identifier from huggingface.co/models.",)
parser.add_argument("--checkpointing_epoch",type=int,default=10,help=("Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"" training using `--resume_from_checkpoint`."),)
parser.add_argument("--pretrained_ip_adapter_path",type=str,default="ckpt/ip_adapter/ip-adapter-plus_sdxl_vit-h.bin",help="Path to pretrained ip adapter model. If not specified weights are initialized randomly.",)
parser.add_argument("--image_encoder_path",type=str,default="ckpt/image_encoder",required=False,help="Path to CLIP image encoder",)
parser.add_argument("--gradient_checkpointing",action="store_true",help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",)
parser.add_argument("--width",type=int,default=768,)
parser.add_argument("--height",type=int,default=1024,)
parser.add_argument("--gradient_accumulation_steps",type=int,default=1,help="Number of updates steps to accumulate before performing a backward/update pass.",)
parser.add_argument("--logging_steps",type=int,default=1000,help=("Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"" training using `--resume_from_checkpoint`."),)
parser.add_argument("--output_dir",type=str,default="output",help="The output directory where the model predictions and checkpoints will be written.",)
parser.add_argument("--snr_gamma",type=float,default=None,help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. ""More details here: https://arxiv.org/abs/2303.09556.",)
parser.add_argument("--num_tokens",type=int,default=16,help=("IP adapter token nums"),)
parser.add_argument("--learning_rate",type=float,default=1e-5,help="Learning rate to use.",)
parser.add_argument("--weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--train_batch_size", type=int, default=6, help="Batch size (per device) for the training dataloader.")
parser.add_argument("--test_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader.")
parser.add_argument("--num_train_epochs", type=int, default=130)
parser.add_argument("--max_train_steps",type=int,default=None,help="Total number of training steps to perform. If provided, overrides num_train_epochs.",)
parser.add_argument("--noise_offset", type=float, default=None, help="noise offset")
parser.add_argument("--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes.")
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.")
parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],help=("Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."),)
parser.add_argument("--guidance_scale",type=float,default=2.0,)
parser.add_argument("--seed", type=int, default=42,)
parser.add_argument("--num_inference_steps",type=int,default=30,)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--data_dir", type=str, default="/home/omnious/workspace/yisol/Dataset/VITON-HD/zalando", help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def main():
args = parse_args()
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
gradient_accumulation_steps=args.gradient_accumulation_steps,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler",rescale_betas_zero_snr=True)
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
tokenizer_2 = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer_2")
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder_2")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path,subfolder="vae",torch_dtype=torch.float16,)
unet_encoder = UNet2DConditionModel_ref.from_pretrained(args.pretrained_garmentnet_path, subfolder="unet")
unet_encoder.config.addition_embed_type = None
unet_encoder.config["addition_embed_type"] = None
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
#customize unet start
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet",low_cpu_mem_usage=False, device_map=None)
unet.config.encoder_hid_dim = image_encoder.config.hidden_size
unet.config.encoder_hid_dim_type = "ip_image_proj"
unet.config["encoder_hid_dim"] = image_encoder.config.hidden_size
unet.config["encoder_hid_dim_type"] = "ip_image_proj"
state_dict = torch.load(args.pretrained_ip_adapter_path, map_location="cpu")
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
adapter_modules.load_state_dict(state_dict["ip_adapter"],strict=True)
#ip-adapter
image_proj_model = Resampler(
dim=image_encoder.config.hidden_size,
depth=4,
dim_head=64,
heads=20,
num_queries=args.num_tokens,
embedding_dim=image_encoder.config.hidden_size,
output_dim=unet.config.cross_attention_dim,
ff_mult=4,
).to(accelerator.device, dtype=torch.float32)
image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
image_proj_model.requires_grad_(True)
unet.encoder_hid_proj = image_proj_model
conv_new = torch.nn.Conv2d(
in_channels=4+4+1+4,
out_channels=unet.conv_in.out_channels,
kernel_size=3,
padding=1,
)
torch.nn.init.kaiming_normal_(conv_new.weight)
conv_new.weight.data = conv_new.weight.data * 0.
conv_new.weight.data[:, :9] = unet.conv_in.weight.data
conv_new.bias.data = unet.conv_in.bias.data
unet.conv_in = conv_new # replace conv layer in unet
unet.config['in_channels'] = 13 # update config
unet.config.in_channels = 13 # update config
#customize unet end
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(accelerator.device)
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder_2.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
unet_encoder.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
unet_encoder.requires_grad_(False)
unet.requires_grad_(True)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
unet_encoder.enable_gradient_checkpointing()
unet.train()
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_opt = itertools.chain(unet.parameters())
optimizer = optimizer_class(
params_to_opt,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
train_dataset = VitonHDDataset(
dataroot_path=args.data_dir,
phase="train",
order="paired",
size=(args.height, args.width),
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
pin_memory=True,
shuffle=False,
batch_size=args.train_batch_size,
num_workers=16,
)
test_dataset = VitonHDDataset(
dataroot_path=args.data_dir,
phase="test",
order="paired",
size=(args.height, args.width),
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
shuffle=False,
batch_size=args.test_batch_size,
num_workers=4,
)
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
unet,image_proj_model,unet_encoder,image_encoder,optimizer,train_dataloader,test_dataloader = accelerator.prepare(unet, image_proj_model,unet_encoder,image_encoder,optimizer,train_dataloader,test_dataloader)
initial_global_step = 0
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Train!
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
global_step = 0
first_epoch = 0
train_loss=0.0
for epoch in range(first_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet), accelerator.accumulate(image_proj_model):
if global_step % args.logging_steps == 0:
if accelerator.is_main_process:
with torch.no_grad():
with torch.cuda.amp.autocast():
unwrapped_unet= accelerator.unwrap_model(unet)
newpipe = TryonPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unwrapped_unet,
vae= vae,
scheduler=noise_scheduler,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
image_encoder=image_encoder,
unet_encoder = unet_encoder,
torch_dtype=torch.float16,
add_watermarker=False,
safety_checker=None,
).to(accelerator.device)
with torch.no_grad():
for sample in test_dataloader:
img_emb_list = []
for i in range(sample['cloth'].shape[0]):
img_emb_list.append(sample['cloth'][i])
prompt = sample["caption"]
num_prompts = sample['cloth'].shape[0]
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_embeds = torch.cat(img_emb_list,dim=0)
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = newpipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = sample["caption_cloth"]
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = newpipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
generator = torch.Generator(newpipe.device).manual_seed(args.seed) if args.seed is not None else None
images = newpipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
num_inference_steps=args.num_inference_steps,
generator=generator,
strength = 1.0,
pose_img = sample['pose_img'],
text_embeds_cloth=prompt_embeds_c,
cloth = sample["cloth_pure"].to(accelerator.device),
mask_image=sample['inpaint_mask'],
image=(sample['image']+1.0)/2.0,
height=args.height,
width=args.width,
guidance_scale=args.guidance_scale,
ip_adapter_image = image_embeds,
)[0]
for i in range(len(images)):
images[i].save(os.path.join(args.output_dir,str(global_step)+"_"+str(i)+"_"+"test.jpg"))
break
del unwrapped_unet
del newpipe
torch.cuda.empty_cache()
pixel_values = batch["image"].to(dtype=vae.dtype)
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = model_input * vae.config.scaling_factor
masked_latents = vae.encode(
batch["im_mask"].reshape(batch["image"].shape).to(dtype=vae.dtype)
).latent_dist.sample()
masked_latents = masked_latents * vae.config.scaling_factor
masks = batch["inpaint_mask"]
# resize the mask to latents shape as we concatenate the mask to the latents
mask = torch.stack(
[
torch.nn.functional.interpolate(masks, size=(args.height // 8, args.width // 8))
]
)
mask = mask.reshape(-1, 1, args.height // 8, args.width // 8)
pose_map = vae.encode(batch["pose_img"].to(dtype=vae.dtype)).latent_dist.sample()
pose_map = pose_map * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
)
# Add noise to the latents according to the noise magnitude at each timestep
noisy_latents = noise_scheduler.add_noise(model_input, noise, timesteps)
latent_model_input = torch.cat([noisy_latents, mask,masked_latents,pose_map], dim=1)
text_input_ids = tokenizer(
batch['caption'],
max_length=tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
text_input_ids_2 = tokenizer_2(
batch['caption'],
max_length=tokenizer_2.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
encoder_output = text_encoder(text_input_ids.to(accelerator.device), output_hidden_states=True)
text_embeds = encoder_output.hidden_states[-2]
encoder_output_2 = text_encoder_2(text_input_ids_2.to(accelerator.device), output_hidden_states=True)
pooled_text_embeds = encoder_output_2[0]
text_embeds_2 = encoder_output_2.hidden_states[-2]
encoder_hidden_states = torch.concat([text_embeds, text_embeds_2], dim=-1) # concat
def compute_time_ids(original_size, crops_coords_top_left = (0,0)):
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
target_size = (args.height, args.height)
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.to(accelerator.device)
return add_time_ids
add_time_ids = torch.cat(
[compute_time_ids((args.height, args.height)) for i in range(bsz)]
)
img_emb_list = []
for i in range(bsz):
img_emb_list.append(batch['cloth'][i])
image_embeds = torch.cat(img_emb_list,dim=0)
image_embeds = image_encoder(image_embeds, output_hidden_states=True).hidden_states[-2]
ip_tokens =image_proj_model(image_embeds)
# add cond
unet_added_cond_kwargs = {"text_embeds": pooled_text_embeds, "time_ids": add_time_ids}
unet_added_cond_kwargs["image_embeds"] = ip_tokens
cloth_values = batch["cloth_pure"].to(accelerator.device,dtype=vae.dtype)
cloth_values = vae.encode(cloth_values).latent_dist.sample()
cloth_values = cloth_values * vae.config.scaling_factor
text_input_ids = tokenizer(
batch['caption_cloth'],
max_length=tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
text_input_ids_2 = tokenizer_2(
batch['caption_cloth'],
max_length=tokenizer_2.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
).input_ids
encoder_output = text_encoder(text_input_ids.to(accelerator.device), output_hidden_states=True)
text_embeds_cloth = encoder_output.hidden_states[-2]
encoder_output_2 = text_encoder_2(text_input_ids_2.to(accelerator.device), output_hidden_states=True)
text_embeds_2_cloth = encoder_output_2.hidden_states[-2]
text_embeds_cloth = torch.concat([text_embeds_cloth, text_embeds_2_cloth], dim=-1) # concat
down,reference_features = unet_encoder(cloth_values,timesteps, text_embeds_cloth,return_dict=False)
reference_features = list(reference_features)
noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states,added_cond_kwargs=unet_added_cond_kwargs,garment_features=reference_features).sample
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
elif noise_scheduler.config.prediction_type == "sample":
# We set the target to latents here, but the model_pred will return the noise sample prediction.
target = model_input
# We will have to subtract the noise residual from the prediction to get the target sample.
model_pred = model_pred - noise
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
if args.snr_gamma is None:
loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
# This is discussed in Section 4.2 of the same paper.
snr = compute_snr(noise_scheduler, timesteps)
if noise_scheduler.config.prediction_type == "v_prediction":
# Velocity objective requires that we add one to SNR values before we divide by them.
snr = snr + 1
mse_loss_weights = (
torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
)
loss = F.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(params_to_opt, 1.0)
optimizer.step()
optimizer.zero_grad()
# Load scheduler, tokenizer and models.
progress_bar.update(1)
global_step += 1
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
logs = {"step_loss": loss.detach().item()}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if global_step % args.checkpointing_epoch == 0:
if accelerator.is_main_process:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
unwrapped_unet = accelerator.unwrap_model(
unet, keep_fp32_wrapper=True
)
pipeline = TryonPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unwrapped_unet,
vae= vae,
scheduler=noise_scheduler,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
image_encoder=image_encoder,
unet_encoder=unet_encoder,
torch_dtype=torch.float16,
add_watermarker=False,
safety_checker=None,
)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
pipeline.save_pretrained(save_path)
del pipeline
if __name__ == "__main__":
main()
|