File size: 3,355 Bytes
1850baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

from typing import Any, List
import torch
from torch.nn import functional as F

from detectron2.config import CfgNode
from detectron2.structures import Instances

from .utils import resample_data


class SegmentationLoss:
    """
    Segmentation loss as cross-entropy for raw unnormalized scores given ground truth
    labels. Segmentation ground truth labels are defined for the bounding box of
    interest at some fixed resolution [S, S], where
        S = MODEL.ROI_DENSEPOSE_HEAD.HEATMAP_SIZE.
    """

    def __init__(self, cfg: CfgNode):
        """
        Initialize segmentation loss from configuration options

        Args:
            cfg (CfgNode): configuration options
        """
        self.heatmap_size = cfg.MODEL.ROI_DENSEPOSE_HEAD.HEATMAP_SIZE
        self.n_segm_chan = cfg.MODEL.ROI_DENSEPOSE_HEAD.NUM_COARSE_SEGM_CHANNELS

    def __call__(
        self,
        proposals_with_gt: List[Instances],
        densepose_predictor_outputs: Any,
        packed_annotations: Any,
    ) -> torch.Tensor:
        """
        Compute segmentation loss as cross-entropy on aligned segmentation
        ground truth and estimated scores.

        Args:
            proposals_with_gt (list of Instances): detections with associated ground truth data
            densepose_predictor_outputs: an object of a dataclass that contains predictor outputs
                with estimated values; assumed to have the following attributes:
                * coarse_segm - coarse segmentation estimates, tensor of shape [N, D, S, S]
            packed_annotations: packed annotations for efficient loss computation;
                the following attributes are used:
                 - coarse_segm_gt
                 - bbox_xywh_gt
                 - bbox_xywh_est
        """
        if packed_annotations.coarse_segm_gt is None:
            return self.fake_value(densepose_predictor_outputs)
        coarse_segm_est = densepose_predictor_outputs.coarse_segm[packed_annotations.bbox_indices]
        with torch.no_grad():
            coarse_segm_gt = resample_data(
                packed_annotations.coarse_segm_gt.unsqueeze(1),
                packed_annotations.bbox_xywh_gt,
                packed_annotations.bbox_xywh_est,
                self.heatmap_size,
                self.heatmap_size,
                mode="nearest",
                padding_mode="zeros",
            ).squeeze(1)
        if self.n_segm_chan == 2:
            coarse_segm_gt = coarse_segm_gt > 0
        return F.cross_entropy(coarse_segm_est, coarse_segm_gt.long())

    def fake_value(self, densepose_predictor_outputs: Any) -> torch.Tensor:
        """
        Fake segmentation loss used when no suitable ground truth data
        was found in a batch. The loss has a value 0 and is primarily used to
        construct the computation graph, so that `DistributedDataParallel`
        has similar graphs on all GPUs and can perform reduction properly.

        Args:
            densepose_predictor_outputs: DensePose predictor outputs, an object
                of a dataclass that is assumed to have `coarse_segm`
                attribute
        Return:
            Zero value loss with proper computation graph
        """
        return densepose_predictor_outputs.coarse_segm.sum() * 0