File size: 6,705 Bytes
1850baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright (c) Facebook, Inc. and its affiliates.

import contextlib
from unittest import mock
import torch

from detectron2.modeling import poolers
from detectron2.modeling.proposal_generator import rpn
from detectron2.modeling.roi_heads import keypoint_head, mask_head
from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers

from .c10 import (
    Caffe2Compatible,
    Caffe2FastRCNNOutputsInference,
    Caffe2KeypointRCNNInference,
    Caffe2MaskRCNNInference,
    Caffe2ROIPooler,
    Caffe2RPN,
    caffe2_fast_rcnn_outputs_inference,
    caffe2_keypoint_rcnn_inference,
    caffe2_mask_rcnn_inference,
)


class GenericMixin:
    pass


class Caffe2CompatibleConverter:
    """
    A GenericUpdater which implements the `create_from` interface, by modifying
    module object and assign it with another class replaceCls.
    """

    def __init__(self, replaceCls):
        self.replaceCls = replaceCls

    def create_from(self, module):
        # update module's class to the new class
        assert isinstance(module, torch.nn.Module)
        if issubclass(self.replaceCls, GenericMixin):
            # replaceCls should act as mixin, create a new class on-the-fly
            new_class = type(
                "{}MixedWith{}".format(self.replaceCls.__name__, module.__class__.__name__),
                (self.replaceCls, module.__class__),
                {},  # {"new_method": lambda self: ...},
            )
            module.__class__ = new_class
        else:
            # replaceCls is complete class, this allow arbitrary class swap
            module.__class__ = self.replaceCls

        # initialize Caffe2Compatible
        if isinstance(module, Caffe2Compatible):
            module.tensor_mode = False

        return module


def patch(model, target, updater, *args, **kwargs):
    """
    recursively (post-order) update all modules with the target type and its
    subclasses, make a initialization/composition/inheritance/... via the
    updater.create_from.
    """
    for name, module in model.named_children():
        model._modules[name] = patch(module, target, updater, *args, **kwargs)
    if isinstance(model, target):
        return updater.create_from(model, *args, **kwargs)
    return model


def patch_generalized_rcnn(model):
    ccc = Caffe2CompatibleConverter
    model = patch(model, rpn.RPN, ccc(Caffe2RPN))
    model = patch(model, poolers.ROIPooler, ccc(Caffe2ROIPooler))

    return model


@contextlib.contextmanager
def mock_fastrcnn_outputs_inference(
    tensor_mode, check=True, box_predictor_type=FastRCNNOutputLayers
):
    with mock.patch.object(
        box_predictor_type,
        "inference",
        autospec=True,
        side_effect=Caffe2FastRCNNOutputsInference(tensor_mode),
    ) as mocked_func:
        yield
    if check:
        assert mocked_func.call_count > 0


@contextlib.contextmanager
def mock_mask_rcnn_inference(tensor_mode, patched_module, check=True):
    with mock.patch(
        "{}.mask_rcnn_inference".format(patched_module), side_effect=Caffe2MaskRCNNInference()
    ) as mocked_func:
        yield
    if check:
        assert mocked_func.call_count > 0


@contextlib.contextmanager
def mock_keypoint_rcnn_inference(tensor_mode, patched_module, use_heatmap_max_keypoint, check=True):
    with mock.patch(
        "{}.keypoint_rcnn_inference".format(patched_module),
        side_effect=Caffe2KeypointRCNNInference(use_heatmap_max_keypoint),
    ) as mocked_func:
        yield
    if check:
        assert mocked_func.call_count > 0


class ROIHeadsPatcher:
    def __init__(self, heads, use_heatmap_max_keypoint):
        self.heads = heads
        self.use_heatmap_max_keypoint = use_heatmap_max_keypoint
        self.previous_patched = {}

    @contextlib.contextmanager
    def mock_roi_heads(self, tensor_mode=True):
        """
        Patching several inference functions inside ROIHeads and its subclasses

        Args:
            tensor_mode (bool): whether the inputs/outputs are caffe2's tensor
                format or not. Default to True.
        """
        # NOTE: this requries the `keypoint_rcnn_inference` and `mask_rcnn_inference`
        # are called inside the same file as BaseXxxHead due to using mock.patch.
        kpt_heads_mod = keypoint_head.BaseKeypointRCNNHead.__module__
        mask_head_mod = mask_head.BaseMaskRCNNHead.__module__

        mock_ctx_managers = [
            mock_fastrcnn_outputs_inference(
                tensor_mode=tensor_mode,
                check=True,
                box_predictor_type=type(self.heads.box_predictor),
            )
        ]
        if getattr(self.heads, "keypoint_on", False):
            mock_ctx_managers += [
                mock_keypoint_rcnn_inference(
                    tensor_mode, kpt_heads_mod, self.use_heatmap_max_keypoint
                )
            ]
        if getattr(self.heads, "mask_on", False):
            mock_ctx_managers += [mock_mask_rcnn_inference(tensor_mode, mask_head_mod)]

        with contextlib.ExitStack() as stack:  # python 3.3+
            for mgr in mock_ctx_managers:
                stack.enter_context(mgr)
            yield

    def patch_roi_heads(self, tensor_mode=True):
        self.previous_patched["box_predictor"] = self.heads.box_predictor.inference
        self.previous_patched["keypoint_rcnn"] = keypoint_head.keypoint_rcnn_inference
        self.previous_patched["mask_rcnn"] = mask_head.mask_rcnn_inference

        def patched_fastrcnn_outputs_inference(predictions, proposal):
            return caffe2_fast_rcnn_outputs_inference(
                True, self.heads.box_predictor, predictions, proposal
            )

        self.heads.box_predictor.inference = patched_fastrcnn_outputs_inference

        if getattr(self.heads, "keypoint_on", False):

            def patched_keypoint_rcnn_inference(pred_keypoint_logits, pred_instances):
                return caffe2_keypoint_rcnn_inference(
                    self.use_heatmap_max_keypoint, pred_keypoint_logits, pred_instances
                )

            keypoint_head.keypoint_rcnn_inference = patched_keypoint_rcnn_inference

        if getattr(self.heads, "mask_on", False):

            def patched_mask_rcnn_inference(pred_mask_logits, pred_instances):
                return caffe2_mask_rcnn_inference(pred_mask_logits, pred_instances)

            mask_head.mask_rcnn_inference = patched_mask_rcnn_inference

    def unpatch_roi_heads(self):
        self.heads.box_predictor.inference = self.previous_patched["box_predictor"]
        keypoint_head.keypoint_rcnn_inference = self.previous_patched["keypoint_rcnn"]
        mask_head.mask_rcnn_inference = self.previous_patched["mask_rcnn"]