|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal |
|
from ip_adapter.ip_adapter import Resampler |
|
|
|
import argparse |
|
import logging |
|
import os |
|
import torch.utils.data as data |
|
import torchvision |
|
import json |
|
import accelerate |
|
import numpy as np |
|
import torch |
|
from PIL import Image, ImageDraw |
|
import torch.nn.functional as F |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from packaging import version |
|
from torchvision import transforms |
|
import diffusers |
|
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, StableDiffusionXLControlNetInpaintPipeline |
|
from transformers import AutoTokenizer, PretrainedConfig,CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer |
|
import cv2 |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from numpy.linalg import lstsq |
|
|
|
from src.unet_hacked_tryon import UNet2DConditionModel |
|
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref |
|
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline |
|
|
|
|
|
|
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
label_map={ |
|
"background": 0, |
|
"hat": 1, |
|
"hair": 2, |
|
"sunglasses": 3, |
|
"upper_clothes": 4, |
|
"skirt": 5, |
|
"pants": 6, |
|
"dress": 7, |
|
"belt": 8, |
|
"left_shoe": 9, |
|
"right_shoe": 10, |
|
"head": 11, |
|
"left_leg": 12, |
|
"right_leg": 13, |
|
"left_arm": 14, |
|
"right_arm": 15, |
|
"bag": 16, |
|
"scarf": 17, |
|
} |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument("--pretrained_model_name_or_path",type=str,default= "yisol/IDM-VTON",required=False,) |
|
parser.add_argument("--width",type=int,default=768,) |
|
parser.add_argument("--height",type=int,default=1024,) |
|
parser.add_argument("--num_inference_steps",type=int,default=30,) |
|
parser.add_argument("--output_dir",type=str,default="result",) |
|
parser.add_argument("--category",type=str,default="upper_body",choices=["upper_body", "lower_body", "dresses"]) |
|
parser.add_argument("--unpaired",action="store_true",) |
|
parser.add_argument("--data_dir",type=str,default="/home/omnious/workspace/yisol/Dataset/zalando") |
|
parser.add_argument("--seed", type=int, default=42,) |
|
parser.add_argument("--test_batch_size", type=int, default=2,) |
|
parser.add_argument("--guidance_scale",type=float,default=2.0,) |
|
parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],) |
|
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.") |
|
args = parser.parse_args() |
|
|
|
|
|
return args |
|
|
|
def pil_to_tensor(images): |
|
images = np.array(images).astype(np.float32) / 255.0 |
|
images = torch.from_numpy(images.transpose(2, 0, 1)) |
|
return images |
|
|
|
|
|
class DresscodeTestDataset(data.Dataset): |
|
def __init__( |
|
self, |
|
dataroot_path: str, |
|
phase: Literal["train", "test"], |
|
order: Literal["paired", "unpaired"] = "paired", |
|
category = "upper_body", |
|
size: Tuple[int, int] = (512, 384), |
|
): |
|
super(DresscodeTestDataset, self).__init__() |
|
self.dataroot = os.path.join(dataroot_path,category) |
|
self.phase = phase |
|
self.height = size[0] |
|
self.width = size[1] |
|
self.size = size |
|
self.transform = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
self.toTensor = transforms.ToTensor() |
|
self.order = order |
|
self.radius = 5 |
|
self.category = category |
|
im_names = [] |
|
c_names = [] |
|
|
|
|
|
if phase == "train": |
|
filename = os.path.join(dataroot_path,category, f"{phase}_pairs.txt") |
|
else: |
|
filename = os.path.join(dataroot_path,category, f"{phase}_pairs_{order}.txt") |
|
|
|
with open(filename, "r") as f: |
|
for line in f.readlines(): |
|
im_name, c_name = line.strip().split() |
|
|
|
im_names.append(im_name) |
|
c_names.append(c_name) |
|
|
|
|
|
file_path = os.path.join(dataroot_path,category,"dc_caption.txt") |
|
|
|
self.annotation_pair = {} |
|
with open(file_path, "r") as file: |
|
for line in file: |
|
parts = line.strip().split(" ") |
|
self.annotation_pair[parts[0]] = ' '.join(parts[1:]) |
|
|
|
|
|
self.im_names = im_names |
|
self.c_names = c_names |
|
self.clip_processor = CLIPImageProcessor() |
|
def __getitem__(self, index): |
|
c_name = self.c_names[index] |
|
im_name = self.im_names[index] |
|
if c_name in self.annotation_pair: |
|
cloth_annotation = self.annotation_pair[c_name] |
|
else: |
|
cloth_annotation = self.category |
|
cloth = Image.open(os.path.join(self.dataroot, "images", c_name)) |
|
|
|
im_pil_big = Image.open( |
|
os.path.join(self.dataroot, "images", im_name) |
|
).resize((self.width,self.height)) |
|
image = self.transform(im_pil_big) |
|
|
|
|
|
|
|
|
|
skeleton = Image.open(os.path.join(self.dataroot, 'skeletons', im_name.replace("_0", "_5"))) |
|
skeleton = skeleton.resize((self.width, self.height)) |
|
skeleton = self.transform(skeleton) |
|
|
|
|
|
parse_name = im_name.replace('_0.jpg', '_4.png') |
|
im_parse = Image.open(os.path.join(self.dataroot, 'label_maps', parse_name)) |
|
im_parse = im_parse.resize((self.width, self.height), Image.NEAREST) |
|
parse_array = np.array(im_parse) |
|
|
|
|
|
pose_name = im_name.replace('_0.jpg', '_2.json') |
|
with open(os.path.join(self.dataroot, 'keypoints', pose_name), 'r') as f: |
|
pose_label = json.load(f) |
|
pose_data = pose_label['keypoints'] |
|
pose_data = np.array(pose_data) |
|
pose_data = pose_data.reshape((-1, 4)) |
|
|
|
point_num = pose_data.shape[0] |
|
pose_map = torch.zeros(point_num, self.height, self.width) |
|
r = self.radius * (self.height / 512.0) |
|
for i in range(point_num): |
|
one_map = Image.new('L', (self.width, self.height)) |
|
draw = ImageDraw.Draw(one_map) |
|
point_x = np.multiply(pose_data[i, 0], self.width / 384.0) |
|
point_y = np.multiply(pose_data[i, 1], self.height / 512.0) |
|
if point_x > 1 and point_y > 1: |
|
draw.rectangle((point_x - r, point_y - r, point_x + r, point_y + r), 'white', 'white') |
|
one_map = self.toTensor(one_map) |
|
pose_map[i] = one_map[0] |
|
|
|
agnostic_mask = self.get_agnostic(parse_array, pose_data, self.category, (self.width,self.height)) |
|
|
|
|
|
|
|
mask = 1 - agnostic_mask |
|
im_mask = image * agnostic_mask |
|
|
|
pose_img = Image.open( |
|
os.path.join(self.dataroot, "image-densepose", im_name) |
|
) |
|
pose_img = self.transform(pose_img) |
|
|
|
result = {} |
|
result["c_name"] = c_name |
|
result["im_name"] = im_name |
|
result["image"] = image |
|
result["cloth_pure"] = self.transform(cloth) |
|
result["cloth"] = self.clip_processor(images=cloth, return_tensors="pt").pixel_values |
|
result["inpaint_mask"] =mask |
|
result["im_mask"] = im_mask |
|
result["caption_cloth"] = "a photo of " + cloth_annotation |
|
result["caption"] = "model is wearing a " + cloth_annotation |
|
result["pose_img"] = pose_img |
|
|
|
return result |
|
|
|
def __len__(self): |
|
|
|
return len(self.im_names) |
|
|
|
|
|
|
|
|
|
def get_agnostic(self,parse_array, pose_data, category, size): |
|
parse_shape = (parse_array > 0).astype(np.float32) |
|
|
|
parse_head = (parse_array == 1).astype(np.float32) + \ |
|
(parse_array == 2).astype(np.float32) + \ |
|
(parse_array == 3).astype(np.float32) + \ |
|
(parse_array == 11).astype(np.float32) |
|
|
|
parser_mask_fixed = (parse_array == label_map["hair"]).astype(np.float32) + \ |
|
(parse_array == label_map["left_shoe"]).astype(np.float32) + \ |
|
(parse_array == label_map["right_shoe"]).astype(np.float32) + \ |
|
(parse_array == label_map["hat"]).astype(np.float32) + \ |
|
(parse_array == label_map["sunglasses"]).astype(np.float32) + \ |
|
(parse_array == label_map["scarf"]).astype(np.float32) + \ |
|
(parse_array == label_map["bag"]).astype(np.float32) |
|
|
|
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32) |
|
|
|
arms = (parse_array == 14).astype(np.float32) + (parse_array == 15).astype(np.float32) |
|
|
|
if category == 'dresses': |
|
label_cat = 7 |
|
parse_mask = (parse_array == 7).astype(np.float32) + \ |
|
(parse_array == 12).astype(np.float32) + \ |
|
(parse_array == 13).astype(np.float32) |
|
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) |
|
|
|
elif category == 'upper_body': |
|
label_cat = 4 |
|
parse_mask = (parse_array == 4).astype(np.float32) |
|
|
|
parser_mask_fixed += (parse_array == label_map["skirt"]).astype(np.float32) + \ |
|
(parse_array == label_map["pants"]).astype(np.float32) |
|
|
|
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) |
|
elif category == 'lower_body': |
|
label_cat = 6 |
|
parse_mask = (parse_array == 6).astype(np.float32) + \ |
|
(parse_array == 12).astype(np.float32) + \ |
|
(parse_array == 13).astype(np.float32) |
|
|
|
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \ |
|
(parse_array == 14).astype(np.float32) + \ |
|
(parse_array == 15).astype(np.float32) |
|
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) |
|
|
|
parse_head = torch.from_numpy(parse_head) |
|
parse_mask = torch.from_numpy(parse_mask) |
|
parser_mask_fixed = torch.from_numpy(parser_mask_fixed) |
|
parser_mask_changeable = torch.from_numpy(parser_mask_changeable) |
|
|
|
|
|
parse_without_cloth = np.logical_and(parse_shape, np.logical_not(parse_mask)) |
|
parse_mask = parse_mask.cpu().numpy() |
|
|
|
width = size[0] |
|
height = size[1] |
|
|
|
im_arms = Image.new('L', (width, height)) |
|
arms_draw = ImageDraw.Draw(im_arms) |
|
if category == 'dresses' or category == 'upper_body': |
|
shoulder_right = tuple(np.multiply(pose_data[2, :2], height / 512.0)) |
|
shoulder_left = tuple(np.multiply(pose_data[5, :2], height / 512.0)) |
|
elbow_right = tuple(np.multiply(pose_data[3, :2], height / 512.0)) |
|
elbow_left = tuple(np.multiply(pose_data[6, :2], height / 512.0)) |
|
wrist_right = tuple(np.multiply(pose_data[4, :2], height / 512.0)) |
|
wrist_left = tuple(np.multiply(pose_data[7, :2], height / 512.0)) |
|
if wrist_right[0] <= 1. and wrist_right[1] <= 1.: |
|
if elbow_right[0] <= 1. and elbow_right[1] <= 1.: |
|
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right], 'white', 30, 'curve') |
|
else: |
|
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right], 'white', 30, |
|
'curve') |
|
elif wrist_left[0] <= 1. and wrist_left[1] <= 1.: |
|
if elbow_left[0] <= 1. and elbow_left[1] <= 1.: |
|
arms_draw.line([shoulder_left, shoulder_right, elbow_right, wrist_right], 'white', 30, 'curve') |
|
else: |
|
arms_draw.line([elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right], 'white', 30, |
|
'curve') |
|
else: |
|
arms_draw.line([wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right], 'white', |
|
30, 'curve') |
|
|
|
if height > 512: |
|
im_arms = cv2.dilate(np.float32(im_arms), np.ones((10, 10), np.uint16), iterations=5) |
|
elif height > 256: |
|
im_arms = cv2.dilate(np.float32(im_arms), np.ones((5, 5), np.uint16), iterations=5) |
|
hands = np.logical_and(np.logical_not(im_arms), arms) |
|
parse_mask += im_arms |
|
parser_mask_fixed += hands |
|
|
|
|
|
parse_head_2 = torch.clone(parse_head) |
|
if category == 'dresses' or category == 'upper_body': |
|
points = [] |
|
points.append(np.multiply(pose_data[2, :2], height / 512.0)) |
|
points.append(np.multiply(pose_data[5, :2], height / 512.0)) |
|
x_coords, y_coords = zip(*points) |
|
A = np.vstack([x_coords, np.ones(len(x_coords))]).T |
|
m, c = lstsq(A, y_coords, rcond=None)[0] |
|
for i in range(parse_array.shape[1]): |
|
y = i * m + c |
|
parse_head_2[int(y - 20 * (height / 512.0)):, i] = 0 |
|
|
|
parser_mask_fixed = np.logical_or(parser_mask_fixed, np.array(parse_head_2, dtype=np.uint16)) |
|
parse_mask += np.logical_or(parse_mask, np.logical_and(np.array(parse_head, dtype=np.uint16), |
|
np.logical_not(np.array(parse_head_2, dtype=np.uint16)))) |
|
|
|
if height > 512: |
|
parse_mask = cv2.dilate(parse_mask, np.ones((20, 20), np.uint16), iterations=5) |
|
elif height > 256: |
|
parse_mask = cv2.dilate(parse_mask, np.ones((10, 10), np.uint16), iterations=5) |
|
else: |
|
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5) |
|
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask)) |
|
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed) |
|
agnostic_mask = parse_mask_total.unsqueeze(0) |
|
return agnostic_mask |
|
|
|
|
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir) |
|
accelerator = Accelerator( |
|
mixed_precision=args.mixed_precision, |
|
project_config=accelerator_project_config, |
|
) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
weight_dtype = torch.float16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
vae = AutoencoderKL.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="vae", |
|
torch_dtype=torch.float16, |
|
) |
|
unet = UNet2DConditionModel.from_pretrained( |
|
"yisol/IDM-VTON-DC", |
|
subfolder="unet", |
|
torch_dtype=torch.float16, |
|
) |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="image_encoder", |
|
torch_dtype=torch.float16, |
|
) |
|
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="unet_encoder", |
|
torch_dtype=torch.float16, |
|
) |
|
text_encoder_one = CLIPTextModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
torch_dtype=torch.float16, |
|
) |
|
text_encoder_two = CLIPTextModelWithProjection.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="text_encoder_2", |
|
torch_dtype=torch.float16, |
|
) |
|
tokenizer_one = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=None, |
|
use_fast=False, |
|
) |
|
tokenizer_two = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer_2", |
|
revision=None, |
|
use_fast=False, |
|
) |
|
|
|
|
|
|
|
unet.requires_grad_(False) |
|
vae.requires_grad_(False) |
|
image_encoder.requires_grad_(False) |
|
UNet_Encoder.requires_grad_(False) |
|
text_encoder_one.requires_grad_(False) |
|
text_encoder_two.requires_grad_(False) |
|
UNet_Encoder.to(accelerator.device, weight_dtype) |
|
unet.eval() |
|
UNet_Encoder.eval() |
|
|
|
|
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warn( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
test_dataset = DresscodeTestDataset( |
|
dataroot_path=args.data_dir, |
|
phase="test", |
|
order="unpaired" if args.unpaired else "paired", |
|
category = args.category, |
|
size=(args.height, args.width), |
|
) |
|
test_dataloader = torch.utils.data.DataLoader( |
|
test_dataset, |
|
shuffle=False, |
|
batch_size=args.test_batch_size, |
|
num_workers=4, |
|
) |
|
|
|
pipe = TryonPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
unet=unet, |
|
vae=vae, |
|
feature_extractor= CLIPImageProcessor(), |
|
text_encoder = text_encoder_one, |
|
text_encoder_2 = text_encoder_two, |
|
tokenizer = tokenizer_one, |
|
tokenizer_2 = tokenizer_two, |
|
scheduler = noise_scheduler, |
|
image_encoder=image_encoder, |
|
torch_dtype=torch.float16, |
|
).to(accelerator.device) |
|
pipe.unet_encoder = UNet_Encoder |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
|
with torch.cuda.amp.autocast(): |
|
with torch.no_grad(): |
|
for sample in test_dataloader: |
|
img_emb_list = [] |
|
for i in range(sample['cloth'].shape[0]): |
|
img_emb_list.append(sample['cloth'][i]) |
|
|
|
prompt = sample["caption"] |
|
|
|
num_prompts = sample['cloth'].shape[0] |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
image_embeds = torch.cat(img_emb_list,dim=0) |
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=1, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
|
|
|
|
prompt = sample["caption_cloth"] |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
|
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * num_prompts |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * num_prompts |
|
|
|
|
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds_c, |
|
_, |
|
_, |
|
_, |
|
) = pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=1, |
|
do_classifier_free_guidance=False, |
|
negative_prompt=negative_prompt, |
|
) |
|
|
|
|
|
|
|
generator = torch.Generator(pipe.device).manual_seed(args.seed) if args.seed is not None else None |
|
images = pipe( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
num_inference_steps=args.num_inference_steps, |
|
generator=generator, |
|
strength = 1.0, |
|
pose_img = sample['pose_img'], |
|
text_embeds_cloth=prompt_embeds_c, |
|
cloth = sample["cloth_pure"].to(accelerator.device), |
|
mask_image=sample['inpaint_mask'], |
|
image=(sample['image']+1.0)/2.0, |
|
height=args.height, |
|
width=args.width, |
|
guidance_scale=args.guidance_scale, |
|
ip_adapter_image = image_embeds, |
|
)[0] |
|
|
|
|
|
for i in range(len(images)): |
|
x_sample = pil_to_tensor(images[i]) |
|
torchvision.utils.save_image(x_sample,os.path.join(args.output_dir,sample['im_name'][i])) |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|