# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal from ip_adapter.ip_adapter import Resampler import argparse import logging import os import torch.utils.data as data import torchvision import json import accelerate import numpy as np import torch from PIL import Image import torch.nn.functional as F import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from packaging import version from torchvision import transforms import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, StableDiffusionXLControlNetInpaintPipeline from transformers import AutoTokenizer, PretrainedConfig,CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer from diffusers.utils.import_utils import is_xformers_available from src.unet_hacked_tryon import UNet2DConditionModel from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline logger = get_logger(__name__, log_level="INFO") def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument("--pretrained_model_name_or_path",type=str,default= "yisol/IDM-VTON",required=False,) parser.add_argument("--width",type=int,default=768,) parser.add_argument("--height",type=int,default=1024,) parser.add_argument("--num_inference_steps",type=int,default=30,) parser.add_argument("--output_dir",type=str,default="result",) parser.add_argument("--unpaired",action="store_true",) parser.add_argument("--data_dir",type=str,default="/home/omnious/workspace/yisol/Dataset/zalando") parser.add_argument("--seed", type=int, default=42,) parser.add_argument("--test_batch_size", type=int, default=2,) parser.add_argument("--guidance_scale",type=float,default=2.0,) parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],) parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.") args = parser.parse_args() return args def pil_to_tensor(images): images = np.array(images).astype(np.float32) / 255.0 images = torch.from_numpy(images.transpose(2, 0, 1)) return images class VitonHDTestDataset(data.Dataset): def __init__( self, dataroot_path: str, phase: Literal["train", "test"], order: Literal["paired", "unpaired"] = "paired", size: Tuple[int, int] = (512, 384), ): super(VitonHDTestDataset, self).__init__() self.dataroot = dataroot_path self.phase = phase self.height = size[0] self.width = size[1] self.size = size self.transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) self.toTensor = transforms.ToTensor() with open( os.path.join(dataroot_path, phase, "vitonhd_" + phase + "_tagged.json"), "r" ) as file1: data1 = json.load(file1) annotation_list = [ "sleeveLength", "neckLine", "item", ] self.annotation_pair = {} for k, v in data1.items(): for elem in v: annotation_str = "" for template in annotation_list: for tag in elem["tag_info"]: if ( tag["tag_name"] == template and tag["tag_category"] is not None ): annotation_str += tag["tag_category"] annotation_str += " " self.annotation_pair[elem["file_name"]] = annotation_str self.order = order self.toTensor = transforms.ToTensor() im_names = [] c_names = [] dataroot_names = [] if phase == "train": filename = os.path.join(dataroot_path, f"{phase}_pairs.txt") else: filename = os.path.join(dataroot_path, f"{phase}_pairs.txt") with open(filename, "r") as f: for line in f.readlines(): if phase == "train": im_name, _ = line.strip().split() c_name = im_name else: if order == "paired": im_name, _ = line.strip().split() c_name = im_name else: im_name, c_name = line.strip().split() im_names.append(im_name) c_names.append(c_name) dataroot_names.append(dataroot_path) self.im_names = im_names self.c_names = c_names self.dataroot_names = dataroot_names self.clip_processor = CLIPImageProcessor() def __getitem__(self, index): c_name = self.c_names[index] im_name = self.im_names[index] if c_name in self.annotation_pair: cloth_annotation = self.annotation_pair[c_name] else: cloth_annotation = "shirts" cloth = Image.open(os.path.join(self.dataroot, self.phase, "cloth", c_name)) im_pil_big = Image.open( os.path.join(self.dataroot, self.phase, "image", im_name) ).resize((self.width,self.height)) image = self.transform(im_pil_big) mask = Image.open(os.path.join(self.dataroot, self.phase, "agnostic-mask", im_name.replace('.jpg','_mask.png'))).resize((self.width,self.height)) mask = self.toTensor(mask) mask = mask[:1] mask = 1-mask im_mask = image * mask pose_img = Image.open( os.path.join(self.dataroot, self.phase, "image-densepose", im_name) ) pose_img = self.transform(pose_img) # [-1,1] result = {} result["c_name"] = c_name result["im_name"] = im_name result["image"] = image result["cloth_pure"] = self.transform(cloth) result["cloth"] = self.clip_processor(images=cloth, return_tensors="pt").pixel_values result["inpaint_mask"] =1-mask result["im_mask"] = im_mask result["caption_cloth"] = "a photo of " + cloth_annotation result["caption"] = "model is wearing a " + cloth_annotation result["pose_img"] = pose_img return result def __len__(self): # model images + cloth image return len(self.im_names) def main(): args = parse_args() accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir) accelerator = Accelerator( mixed_precision=args.mixed_precision, project_config=accelerator_project_config, ) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) weight_dtype = torch.float16 # if accelerator.mixed_precision == "fp16": # weight_dtype = torch.float16 # args.mixed_precision = accelerator.mixed_precision # elif accelerator.mixed_precision == "bf16": # weight_dtype = torch.bfloat16 # args.mixed_precision = accelerator.mixed_precision # Load scheduler, tokenizer and models. noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", torch_dtype=torch.float16, ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", torch_dtype=torch.float16, ) image_encoder = CLIPVisionModelWithProjection.from_pretrained( args.pretrained_model_name_or_path, subfolder="image_encoder", torch_dtype=torch.float16, ) unet_encoder = UNet2DConditionModel_ref.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet_encoder", torch_dtype=torch.float16, ) text_encoder_one = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.float16, ) text_encoder_two = CLIPTextModelWithProjection.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder_2", torch_dtype=torch.float16, ) tokenizer_one = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=None, use_fast=False, ) tokenizer_two = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=None, use_fast=False, ) # Freeze vae and text_encoder and set unet to trainable unet.requires_grad_(False) vae.requires_grad_(False) image_encoder.requires_grad_(False) unet_encoder.requires_grad_(False) text_encoder_one.requires_grad_(False) text_encoder_two.requires_grad_(False) unet_encoder.to(accelerator.device, weight_dtype) unet.eval() unet_encoder.eval() if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warn( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") test_dataset = VitonHDTestDataset( dataroot_path=args.data_dir, phase="test", order="unpaired" if args.unpaired else "paired", size=(args.height, args.width), ) test_dataloader = torch.utils.data.DataLoader( test_dataset, shuffle=False, batch_size=args.test_batch_size, num_workers=4, ) pipe = TryonPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unet, vae=vae, feature_extractor= CLIPImageProcessor(), text_encoder = text_encoder_one, text_encoder_2 = text_encoder_two, tokenizer = tokenizer_one, tokenizer_2 = tokenizer_two, scheduler = noise_scheduler, image_encoder=image_encoder, unet_encoder = unet_encoder, torch_dtype=torch.float16, ).to(accelerator.device) # pipe.enable_sequential_cpu_offload() # pipe.enable_model_cpu_offload() # pipe.enable_vae_slicing() with torch.no_grad(): # Extract the images with torch.cuda.amp.autocast(): with torch.no_grad(): for sample in test_dataloader: img_emb_list = [] for i in range(sample['cloth'].shape[0]): img_emb_list.append(sample['cloth'][i]) prompt = sample["caption"] num_prompts = sample['cloth'].shape[0] negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" if not isinstance(prompt, List): prompt = [prompt] * num_prompts if not isinstance(negative_prompt, List): negative_prompt = [negative_prompt] * num_prompts image_embeds = torch.cat(img_emb_list,dim=0) with torch.inference_mode(): ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt( prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt, ) prompt = sample["caption_cloth"] negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" if not isinstance(prompt, List): prompt = [prompt] * num_prompts if not isinstance(negative_prompt, List): negative_prompt = [negative_prompt] * num_prompts with torch.inference_mode(): ( prompt_embeds_c, _, _, _, ) = pipe.encode_prompt( prompt, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt, ) generator = torch.Generator(pipe.device).manual_seed(args.seed) if args.seed is not None else None images = pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, num_inference_steps=args.num_inference_steps, generator=generator, strength = 1.0, pose_img = sample['pose_img'], text_embeds_cloth=prompt_embeds_c, cloth = sample["cloth_pure"].to(accelerator.device), mask_image=sample['inpaint_mask'], image=(sample['image']+1.0)/2.0, height=args.height, width=args.width, guidance_scale=args.guidance_scale, ip_adapter_image = image_embeds, )[0] for i in range(len(images)): x_sample = pil_to_tensor(images[i]) torchvision.utils.save_image(x_sample,os.path.join(args.output_dir,sample['im_name'][i])) if __name__ == "__main__": main()