Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import os | |
from PIL import Image | |
import torch | |
from diffusers.utils import load_image, check_min_version | |
from controlnet_flux import FluxControlNetModel | |
from transformer_flux import FluxTransformer2DModel | |
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline | |
import spaces | |
import huggingface_hub | |
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX')) | |
check_min_version("0.30.2") | |
# Build pipeline | |
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16) | |
transformer = FluxTransformer2DModel.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16 | |
) | |
pipe = FluxControlNetInpaintingPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
controlnet=controlnet, | |
transformer=transformer, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
pipe.transformer.to(torch.bfloat16) | |
pipe.controlnet.to(torch.bfloat16) | |
MARKDOWN = """ | |
# FLUX.1-dev-Inpainting-Model-BETA-GPU π₯ | |
""" | |
def process(input_image_editor, | |
prompt, | |
negative_prompt, | |
controlnet_conditioning_scale, | |
guidance_scale, | |
seed, | |
num_inference_steps, | |
true_guidance_scale | |
): | |
image = input_image_editor['background'] | |
mask = input_image_editor['layers'][0] | |
size = (768, 768) | |
image_or = image.copy() | |
image = image.convert("RGB").resize(size) | |
mask = mask.convert("RGB").resize(size) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
result = pipe( | |
prompt=prompt, | |
height=size[1], | |
width=size[0], | |
control_image=image, | |
control_mask=mask, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
guidance_scale=guidance_scale, | |
negative_prompt=negative_prompt, | |
true_guidance_scale=true_guidance_scale | |
).images[0] | |
return result.resize((image_or.size[:2])) | |
with gr.Blocks() as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
with gr.Column(): | |
input_image_editor_component = gr.ImageEditor( | |
label='Image', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")) | |
prompt = gr.Textbox(lines=2, placeholder="Enter prompt here...") | |
negative_prompt = gr.Textbox(lines=2, placeholder="Enter negative_prompt here...") | |
controlnet_conditioning_scale = gr.Slider(minimum=0, step=0.01, maximum=1, value=0.9, label="controlnet_conditioning_scale") | |
guidance_scale = gr.Slider(minimum=1, step=0.5, maximum=10, value=3.5, label="Image to generate") | |
seed = gr.Slider(minimum=0, step=1, maximum=10000000, value=124, label="Seed Value") | |
num_inference_steps = gr.Slider(minimum=1, step=1, maximum=30, value=24, label="num_inference_steps") | |
true_guidance_scale = gr.Slider(minimum=1, step=1, maximum=10, value=3.5, label="true_guidance_scale") | |
submit_button_component = gr.Button( | |
value='Submit', variant='primary', scale=0) | |
with gr.Column(): | |
output_image_component = gr.Image( | |
type='pil', image_mode='RGB', label='Generated image', format="png") | |
submit_button_component.click( | |
fn=process, | |
inputs=[ | |
input_image_editor_component, | |
prompt, | |
negative_prompt, | |
controlnet_conditioning_scale, | |
guidance_scale, | |
seed, | |
num_inference_steps, | |
true_guidance_scale | |
], | |
outputs=[ | |
output_image_component, | |
] | |
) | |
demo.launch(debug=False, show_error=True,share=True) |