import spaces import gradio as gr import torch from diffusers import ( AutoencoderKL, EulerAncestralDiscreteScheduler, ) from diffusers.utils import load_image from replace_bg.model.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline from replace_bg.model.controlnet import ControlNetModel from replace_bg.utilities import resize_image, remove_bg_from_image, paste_fg_over_image, get_control_image_tensor controlnet = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-BG-Gen", torch_dtype=torch.float16) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet, torch_dtype=torch.float16, vae=vae).to('cuda:0') pipe.scheduler = EulerAncestralDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, steps_offset=1 ) @spaces.GPU def generate_(prompt, negative_prompt, control_tensor, num_steps, controlnet_conditioning_scale, seed): generator = torch.Generator("cuda").manual_seed(seed) gen_img = pipe( negative_prompt=negative_prompt, prompt=prompt, controlnet_conditioning_scale=controlnet_conditioning_scale, num_inference_steps=num_steps, image = control_tensor, generator=generator ).images[0] result_image = paste_fg_over_image(gen_img, image, mask) return result_image @spaces.GPU def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): # resize input_image to 1024x1024 input_image = resize_image(input_image) image = resize_image(image) mask = remove_bg_from_image(image_path) control_tensor = get_control_image_tensor(pipe.vae, image, mask) images = generate_(prompt, negative_prompt, control_tensor, num_steps, controlnet_conditioning_scale, seed) return [depth_image, images[0]] block = gr.Blocks().queue() with block: gr.Markdown("## BRIA Generate Background") gr.HTML('''
This is a demo for ControlNet Depth that using BRIA 2.3 text-to-image model as backbone. Trained on licensed data, BRIA 2.3 provide full legal liability coverage for copyright and privacy infringement.
''') with gr.Row(): with gr.Column(): input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1) controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) run_button = gr.Button(value="Run") with gr.Column(): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto') ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch(debug = True)