3DFuse / adapt_sd.py
Hoodady's picture
Duplicate from jyseo/3DFuse
19a1abb
import torch
import numpy as np
from einops import rearrange
from torch import autocast
from contextlib import nullcontext
from math import sqrt
from adapt import ScoreAdapter
from cldm.model import create_model, load_state_dict
from lora_util import *
import warnings
from transformers import logging
warnings.filterwarnings("ignore", category=DeprecationWarning)
logging.set_verbosity_error()
device = torch.device("cuda")
def _sqrt(x):
if isinstance(x, float):
return sqrt(x)
else:
assert isinstance(x, torch.Tensor)
return torch.sqrt(x)
def load_embedding(model,embedding):
length=len(embedding['string_to_param']['*'])
voc=[]
for i in range(length):
voc.append(f'<{str(i)}>')
print(f"Added Token: {voc}")
model.cond_stage_model.tokenizer._add_tokens(voc)
x=torch.nn.Embedding(model.cond_stage_model.tokenizer.__len__(),768)
for params in x.parameters():
params.requires_grad=False
x.weight[:-length]=model.cond_stage_model.transformer.text_model.embeddings.token_embedding.weight
x.weight[-length:]=embedding['string_to_param']['*']
model.cond_stage_model.transformer.text_model.embeddings.token_embedding=x
def load_3DFuse(control,dir,alpha):
######################LOADCONTROL###########################
model = create_model(control['control_yaml']).cpu()
model.load_state_dict(load_state_dict(control['control_weight'], location='cuda'))
state_dict, l = merge("runwayml/stable-diffusion-v1-5",dir,alpha)
#######################OVERRIDE#############################
model.load_state_dict(state_dict,strict=False)
#######################ADDEMBBEDDING########################
load_embedding(model,l)
###############################################################
return model
class StableDiffusion(ScoreAdapter):
def __init__(self, variant, v2_highres, prompt, scale, precision, dir, alpha=1.0):
model=load_3DFuse(self.checkpoint_root(),dir,alpha)
self.model = model.cuda()
H , W = (512, 512)
ae_resolution_f = 8
self._device = self.model._device
self.prompt = prompt
self.scale = scale
self.precision = precision
self.precision_scope = autocast if self.precision == "autocast" else nullcontext
self._data_shape = (4, H // ae_resolution_f, W // ae_resolution_f)
self.cond_func = self.model.get_learned_conditioning
self.M = 1000
noise_schedule = "linear"
self.noise_schedule = noise_schedule
self.us = self.linear_us(self.M)
def data_shape(self):
return self._data_shape
@property
def σ_max(self):
return self.us[0]
@property
def σ_min(self):
return self.us[-1]
@torch.no_grad()
def denoise(self, xs, σ,control, **model_kwargs):
with self.precision_scope("cuda"):
with self.model.ema_scope():
N = xs.shape[0]
c = model_kwargs.pop('c')
uc = model_kwargs.pop('uc')
conditional_conditioning = {"c_concat": [control], "c_crossattn": [c]}
unconditional_conditioning = {"c_concat": [control], "c_crossattn": [uc]}
cond_t, σ = self.time_cond_vec(N, σ)
unscaled_xs = xs
xs = xs / _sqrt(1 + σ**2)
if uc is None or self.scale == 1.:
output = self.model.apply_model(xs, cond_t, c)
else:
x_in = torch.cat([xs] * 2)
t_in = torch.cat([cond_t] * 2)
c_in = dict()
for k in conditional_conditioning:
if isinstance(conditional_conditioning[k], list):
c_in[k] = [torch.cat([
unconditional_conditioning[k][i],
conditional_conditioning[k][i]]) for i in range(len(conditional_conditioning[k]))]
else:
c_in[k] = torch.cat([
unconditional_conditioning[k],
conditional_conditioning[k]])
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
output = e_t_uncond + self.scale * (e_t - e_t_uncond)
if self.model.parameterization == "v":
output = self.model.predict_eps_from_z_and_v(xs, cond_t, output)
else:
output = output
Ds = unscaled_xs - σ * output
return Ds
def cond_info(self, batch_size):
prompts = batch_size * [self.prompt]
return self.prompts_emb(prompts)
@torch.no_grad()
def prompts_emb(self, prompts):
assert isinstance(prompts, list)
batch_size = len(prompts)
with self.precision_scope("cuda"):
with self.model.ema_scope():
cond = {}
c = self.cond_func(prompts)
cond['c'] = c
uc = None
if self.scale != 1.0:
uc = self.cond_func(batch_size * [""])
cond['uc'] = uc
return cond
def unet_is_cond(self):
return True
def use_cls_guidance(self):
return False
def snap_t_to_nearest_tick(self, t):
j = np.abs(t - self.us).argmin()
return self.us[j], j
def time_cond_vec(self, N, σ):
if isinstance(σ, float):
σ, j = self.snap_t_to_nearest_tick(σ) # σ might change due to snapping
cond_t = (self.M - 1) - j
cond_t = torch.tensor([cond_t] * N, device=self.device)
return cond_t, σ
else:
assert isinstance(σ, torch.Tensor)
σ = σ.reshape(-1).cpu().numpy()
σs = []
js = []
for elem in σ:
_σ, _j = self.snap_t_to_nearest_tick(elem)
σs.append(_σ)
js.append((self.M - 1) - _j)
cond_t = torch.tensor(js, device=self.device)
σs = torch.tensor(σs, device=self.device, dtype=torch.float32).reshape(-1, 1, 1, 1)
return cond_t, σs
@staticmethod
def linear_us(M=1000):
assert M == 1000
β_start = 0.00085
β_end = 0.0120
βs = np.linspace(β_start**0.5, β_end**0.5, M, dtype=np.float64)**2
αs = np.cumprod(1 - βs)
us = np.sqrt((1 - αs) / αs)
us = us[::-1]
return us
@torch.no_grad()
def encode(self, xs):
model = self.model
with self.precision_scope("cuda"):
with self.model.ema_scope():
zs = model.get_first_stage_encoding(
model.encode_first_stage(xs)
)
return zs
@torch.no_grad()
def decode(self, xs):
with self.precision_scope("cuda"):
with self.model.ema_scope():
xs = self.model.decode_first_stage(xs)
return xs