Spaces:
Running
Running
File size: 31,879 Bytes
4d1746c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
import ast
import builtins
import copy
import json
import os
import re
from constant import (
DEFAULT_SYSTEM_PROMPT,
GORILLA_TO_OPENAPI,
)
from model_style import ModelStyle
def _cast_to_openai_type(properties, mapping):
for key, value in properties.items():
if "type" not in value:
properties[key]["type"] = "string"
else:
var_type = value["type"]
if mapping == GORILLA_TO_OPENAPI and var_type == "float":
properties[key]["format"] = "float"
properties[key]["description"] += " This is a float type value."
if var_type in mapping:
properties[key]["type"] = mapping[var_type]
else:
properties[key]["type"] = "string"
# Currently support:
# - list of any
# - list of list of any
# - list of dict
# - list of list of dict
# - dict of any
if properties[key]["type"] == "array" or properties[key]["type"] == "object":
if "properties" in properties[key]:
properties[key]["properties"] = _cast_to_openai_type(
properties[key]["properties"], mapping
)
elif "items" in properties[key]:
properties[key]["items"]["type"] = mapping[properties[key]["items"]["type"]]
if (
properties[key]["items"]["type"] == "array"
and "items" in properties[key]["items"]
):
properties[key]["items"]["items"]["type"] = mapping[
properties[key]["items"]["items"]["type"]
]
elif (
properties[key]["items"]["type"] == "object"
and "properties" in properties[key]["items"]
):
properties[key]["items"]["properties"] = _cast_to_openai_type(
properties[key]["items"]["properties"], mapping
)
return properties
def convert_to_tool(functions, mapping, model_style):
functions = copy.deepcopy(functions)
oai_tool = []
for item in functions:
if "." in item["name"] and (
model_style == ModelStyle.OpenAI
or model_style == ModelStyle.Mistral
or model_style == ModelStyle.Google
or model_style == ModelStyle.OSSMODEL
or model_style == ModelStyle.Anthropic
or model_style == ModelStyle.COHERE
):
# OAI does not support "." in the function name so we replace it with "_". ^[a-zA-Z0-9_-]{1,64}$ is the regex for the name.
item["name"] = re.sub(r"\.", "_", item["name"])
item["parameters"]["type"] = "object"
item["parameters"]["properties"] = _cast_to_openai_type(
item["parameters"]["properties"], mapping
)
if model_style == ModelStyle.Anthropic:
item["input_schema"] = item["parameters"]
del item["parameters"]
if model_style == ModelStyle.Google:
# Remove fields that are not supported by Gemini.
# No `optional` field in function schema.
if "optional" in item["parameters"]:
del item["parameters"]["optional"]
for params in item["parameters"]["properties"].values():
# No `default` field in Google's schema.
if "default" in params:
params["description"] += f" Default is: {str(params['default'])}."
del params["default"]
# No `optional` field in parameter schema as well.
if "optional" in params:
params["description"] += f" Optional: {str(params['optional'])}."
del params["optional"]
# No `maximum` field.
if "maximum" in params:
params["description"] += f" Maximum value: {str(params['maximum'])}."
del params["maximum"]
# No `minItems` field.
if "minItems" in params:
params[
"description"
] += f" Minimum number of items: {str(params['minItems'])}."
del params["minItems"]
# No `maxItems` field.
if "maxItems" in params:
params[
"description"
] += f" Maximum number of items: {str(params['maxItems'])}."
del params["maxItems"]
# No `additionalProperties` field.
if "additionalProperties" in params:
params[
"description"
] += f" Additional properties: {str(params['additionalProperties'])}."
del params["additionalProperties"]
# Only `enum` field when the type is `string`.
if "enum" in params and params["type"] != "string":
params["description"] += f" Enum values: {str(params['enum'])}."
del params["enum"]
if model_style == ModelStyle.COHERE:
if os.getenv("USE_COHERE_OPTIMIZATION") == "True":
if "required" not in item["parameters"]:
item["parameters"]["required"] = []
for param_name, params in item["parameters"]["properties"].items():
if "description" not in params:
params["description"] = ""
if "default" in params:
params["description"] += " The default value is: " + str(
params["default"]
)
if param_name not in item["parameters"]["required"]:
item["parameters"]["required"].append(param_name)
del params["default"]
if "additionalProperties" in params:
params["description"] += " Additional properties: " + str(
params["additionalProperties"]
)
del params["additionalProperties"]
if "items" in params:
inner_type = ""
if (
"items" in params["items"]
and "type" in params["items"]["items"]
):
# 2D list
inner_type = params["items"]["items"]["type"]
params["type"] = f"list[list[{inner_type}]]"
elif "type" in params["items"]:
# 1D list
inner_type = params["items"]["type"]
params["type"] = f"list[{inner_type}]"
if (
"items" in params
and "enum" in params["items"]
and params["items"]["enum"]
):
params["description"] += " Possible enum values: "
params["description"] += ", ".join(params["items"]["enum"])
params["description"] += "."
del params["items"]
if "properties" in params:
params["description"] += " Dictionary properties:"
for name, property_ in params["properties"].items():
property_type = property_.get("type", mapping["string"])
property_description = property_.get("description", "")
params[
"description"
] += f" {name} ({property_type}): {property_description}"
del params["properties"]
if "enum" in params:
params["description"] += " Possible enum values: " + str(
params["enum"]
)
del params["enum"]
# add ranges to description
if "percentage" not in params["description"]:
params["description"] = params["description"].replace(
"rate ", "rate (from 0.0 to 1.0) "
)
params["description"] = params["description"].replace(
"percentage ", "percentage (from 0 to 100) "
)
params["description"] = params["description"].replace(
"currency ", "currency (3 letter ISO code) "
)
else:
for params in item["parameters"]["properties"].values():
if "description" not in params:
params["description"] = ""
if "default" in params:
params["description"] += " The default value is: " + str(
params["default"]
)
del params["default"]
if "additionalProperties" in params:
params["description"] += " Additional properties: " + str(
params["additionalProperties"]
)
del params["additionalProperties"]
if "items" in params:
params["description"] += " List Items type: " + str(params["items"])
del params["items"]
if "properties" in params:
params["description"] += " Dictionary properties: " + str(
params["properties"]
)
del params["properties"]
# Process the return field
if "response" in item:
if model_style in [
ModelStyle.Anthropic,
ModelStyle.Google,
ModelStyle.FIREWORK_AI,
ModelStyle.WRITER,
]:
item[
"description"
] += f" The response field has the following schema: {json.dumps(item['response'])}"
del item["response"]
if model_style in [
ModelStyle.Anthropic,
ModelStyle.Google,
ModelStyle.OSSMODEL,
]:
oai_tool.append(item)
elif model_style == ModelStyle.COHERE:
parameter = item["parameters"]["properties"]
if "required" in item["parameters"]:
required = item["parameters"]["required"]
else:
required = []
parameter_definitions = {}
for key, value in parameter.items():
value["required"] = key in required
parameter_definitions[key] = value
oai_tool.append(
{
"name": item["name"],
"description": item["description"],
"parameter_definitions": parameter_definitions,
}
)
elif model_style in [
ModelStyle.OpenAI,
ModelStyle.Mistral,
ModelStyle.FIREWORK_AI,
ModelStyle.WRITER,
]:
oai_tool.append({"type": "function", "function": item})
return oai_tool
def convert_to_function_call(function_call_list):
if type(function_call_list) == dict:
function_call_list = [function_call_list]
# function_call_list is of type list[dict[str, str]] or list[dict[str, dict]]
execution_list = []
for function_call in function_call_list:
for key, value in function_call.items():
if type(value) == str:
value = json.loads(value)
execution_list.append(
f"{key}({','.join([f'{k}={repr(v)}' for k,v in value.items()])})"
)
return execution_list
def convert_value(value, type_str):
"""Convert a string value into its appropriate Python data type based on the provided type string.
Arg:
value: the value to convert
type_str: the type to convert the value to
Returns:
The value converted into the requested type or the original value
if the conversion failed.
"""
if type_str in ("list", "dict"):
try:
return ast.literal_eval(value)
except:
return value
type_class = getattr(builtins, type_str)
try:
return type_class(value)
except ValueError:
return value
def ast_parse(input_str, language="Python"):
if language == "Python":
cleaned_input = input_str.strip("[]'")
parsed = ast.parse(cleaned_input, mode="eval")
extracted = []
if isinstance(parsed.body, ast.Call):
extracted.append(resolve_ast_call(parsed.body))
else:
for elem in parsed.body.elts:
assert isinstance(elem, ast.Call)
extracted.append(resolve_ast_call(elem))
return extracted
elif language == "Java":
pass
elif language == "JavaScript":
pass
else:
raise NotImplementedError(f"Unsupported language: {language}")
def resolve_ast_call(elem):
# Handle nested attributes for deeply nested module paths
func_parts = []
func_part = elem.func
while isinstance(func_part, ast.Attribute):
func_parts.append(func_part.attr)
func_part = func_part.value
if isinstance(func_part, ast.Name):
func_parts.append(func_part.id)
func_name = ".".join(reversed(func_parts))
args_dict = {}
for arg in elem.keywords:
output = resolve_ast_by_type(arg.value)
args_dict[arg.arg] = output
return {func_name: args_dict}
def resolve_ast_by_type(value):
if isinstance(value, ast.Constant):
if value.value is Ellipsis:
output = "..."
else:
output = value.value
elif isinstance(value, ast.UnaryOp):
output = -value.operand.value
elif isinstance(value, ast.List):
output = [resolve_ast_by_type(v) for v in value.elts]
elif isinstance(value, ast.Dict):
output = {
resolve_ast_by_type(k): resolve_ast_by_type(v)
for k, v in zip(value.keys, value.values)
}
elif isinstance(
value, ast.NameConstant
): # Added this condition to handle boolean values
output = value.value
elif isinstance(
value, ast.BinOp
): # Added this condition to handle function calls as arguments
output = eval(ast.unparse(value))
elif isinstance(value, ast.Name):
output = value.id
elif isinstance(value, ast.Call):
if len(value.keywords) == 0:
output = ast.unparse(value)
else:
output = resolve_ast_call(value)
elif isinstance(value, ast.Tuple):
output = tuple(resolve_ast_by_type(v) for v in value.elts)
elif isinstance(value, ast.Lambda):
output = eval(ast.unparse(value.body[0].value))
elif isinstance(value, ast.Ellipsis):
output = "..."
elif isinstance(value, ast.Subscript):
try:
output = ast.unparse(value.body[0].value)
except:
output = ast.unparse(value.value) + "[" + ast.unparse(value.slice) + "]"
else:
raise Exception(f"Unsupported AST type: {type(value)}")
return output
def system_prompt_pre_processing_chat_model(prompts, function_docs, test_category):
"""
Add a system prompt to the chat model to instruct the model on the available functions and the expected response format.
If the prompts list already contains a system prompt, append the additional system prompt content to the existing system prompt.
"""
assert type(prompts) == list
system_prompt_template = DEFAULT_SYSTEM_PROMPT
system_prompt = system_prompt_template.format(functions=function_docs)
# System prompt must be in the first position
# If the question comes with a system prompt, append its content at the end of the chat template.
if prompts[0]["role"] == "system":
prompts[0]["content"] = system_prompt + "\n\n" + prompts[0]["content"]
# Otherwise, use the system prompt template to create a new system prompt.
else:
prompts.insert(
0,
{"role": "system", "content": system_prompt},
)
return prompts
def convert_system_prompt_into_user_prompt(prompts: list[dict]) -> list[dict]:
"""
Some FC models doesn't support system prompt in the message field, so we turn it into user prompt
"""
for prompt in prompts:
if prompt["role"] == "system":
prompt["role"] = "user"
return prompts
def combine_consecutive_user_prompts(prompts: list[dict]) -> list[dict]:
"""
Some models require the prompt to be alternating between user and assistant.
We combine consecutive user prompts into a single user prompt.
"""
combined_prompts = []
for prompt in prompts:
if (
prompt["role"] == "user"
and combined_prompts
and combined_prompts[-1]["role"] == "user"
):
combined_prompts[-1]["content"] += "\n\n" + prompt["content"]
else:
combined_prompts.append(prompt)
return combined_prompts
def _get_language_specific_hint(test_category):
if test_category == "java":
return " Note that the provided function is in Java 8 SDK syntax."
elif test_category == "javascript":
return " Note that the provided function is in JavaScript syntax."
else:
return " Note that the provided function is in Python 3 syntax."
def func_doc_language_specific_pre_processing(function, test_category):
if len(function) == 0:
return function
assert type(function) == list
for item in function:
# Add language specific hints to the function description
func_description = item["description"]
item["description"] = item["description"] + _get_language_specific_hint(
test_category
)
# Process the parameters
properties = item["parameters"]["properties"]
if test_category == "java":
for key, value in properties.items():
if value["type"] == "any":
properties[key][
"description"
] += " This parameter can be of any type of Java object in string representation."
else:
value[
"description"
] += f" This is Java {value['type']} type parameter in string representation."
if value["type"] == "ArrayList" or value["type"] == "Array":
value[
"description"
] += f" The list elements are of type {value['items']['type']}; they are not in string representation."
del value["items"]
value["type"] = "string"
elif test_category == "javascript":
for key, value in properties.items():
if value["type"] == "any":
properties[key][
"description"
] += " This parameter can be of any type of JavaScript object in string representation."
else:
value[
"description"
] += f" This is JavaScript {value['type']} type parameter in string representation."
if value["type"] == "array":
value[
"description"
] += f" The list elements are of type {value['items']['type']}; they are not in string representation."
del value["items"]
if value["type"] == "dict":
if "properties" in value: # not every dict has properties
value[
"description"
] += f" The dictionary entries have the following schema; they are not in string representation. {json.dumps(value['properties'])}"
del value["properties"]
value["type"] = "string"
return function
def construct_tool_use_system_prompt(tools):
tool_use_system_prompt = (
"In this environment you have access to a set of tools you can use to answer the user's question.\n"
"\n"
"You may call them like this:\n"
"<function_calls>\n"
"<invoke>\n"
"<tool_name>$TOOL_NAME</tool_name>\n"
"<parameters>\n"
"<$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>\n"
"...\n"
"</parameters>\n"
"</invoke>\n"
"</function_calls>\n"
"\n"
"Here are the tools available:\n"
"<tools>\n"
+ "\n".join(
[
construct_format_tool_for_claude_prompt(
tool["name"], tool["description"], tool["parameters"]["properties"]
)
for tool in tools
]
)
+ "\n</tools>"
)
return tool_use_system_prompt
def construct_format_tool_for_claude_prompt(name, description, parameters):
constructed_prompt = (
"<tool_description>\n"
f"<tool_name>{name}</tool_name>\n"
"<description>\n"
f"{description}\n"
"</description>\n"
"<parameters>\n"
f"{construct_format_parameters_prompt(parameters)}\n"
"</parameters>\n"
"</tool_description>"
)
return constructed_prompt
def construct_format_parameters_prompt(parameters):
constructed_prompt = ""
for parameter_name, parameter in parameters.items():
if parameter_name == "required":
continue
if "description" in parameter:
description_string = parameter["description"]
else:
description_string = ""
if "default" in parameter:
description_string += f"\nDefault value: {parameter['default']}"
elif "items" in parameter:
description_string += f"\n List element type: {str(parameter['items'])}"
elif "properties" in parameter:
description_string += (
f"\n Dictionaries properties: {str(parameter['properties'])}"
)
if "description" in parameter:
constructed_prompt += f"<parameter>\n<name>{parameter_name}</name>\n<type>{parameter['type']}</type>\n<description>{description_string}</description>\n</parameter>\n"
else:
constructed_prompt += f"<parameter>\n<name>{parameter_name}</name>\n<type>{parameter['type']}</type>\n</parameter>\n"
constructed_prompt = constructed_prompt[:-1]
return constructed_prompt
def _function_calls_valid_format_and_invoke_extraction(last_completion):
"""Check if the function call follows a valid format and extract the attempted function calls if so. Does not check if the tools actually exist or if they are called with the requisite params."""
# Check if there are any of the relevant XML tags present that would indicate an attempted function call.
function_call_tags = re.findall(
r"<function_calls>|</function_calls>|<invoke>|</invoke>|<tool_name>|</tool_name>|<parameters>|</parameters>",
last_completion,
re.DOTALL,
)
if not function_call_tags:
return {"status": True, "invokes": []}
# Extract content between <function_calls> tags. If there are multiple we will only parse the first and ignore the rest, regardless of their correctness.
match = re.search(r"<function_calls>(.*)</function_calls>", last_completion, re.DOTALL)
if not match:
return {
"status": False,
"reason": "No valid <function_calls></function_calls> tags present in your query.",
}
func_calls = match.group(1)
prefix_match = re.search(r"^(.*?)<function_calls>", last_completion, re.DOTALL)
if prefix_match:
func_call_prefix_content = prefix_match.group(1)
# Check for invoke tags
invoke_regex = r"<invoke>.*?</invoke>"
if not re.search(invoke_regex, func_calls, re.DOTALL):
return {
"status": False,
"reason": "Missing <invoke></invoke> tags inside of <function_calls></function_calls> tags.",
}
# Check each invoke contains tool name and parameters
invoke_strings = re.findall(invoke_regex, func_calls, re.DOTALL)
invokes = []
for invoke_string in invoke_strings:
tool_name = re.findall(r"<tool_name>.*?</tool_name>", invoke_string, re.DOTALL)
if not tool_name:
return {
"status": False,
"reason": "Missing <tool_name></tool_name> tags inside of <invoke></invoke> tags.",
}
if len(tool_name) > 1:
return {
"status": False,
"reason": "More than one tool_name specified inside single set of <invoke></invoke> tags.",
}
parameters = re.findall(r"<parameters>.*?</parameters>", invoke_string, re.DOTALL)
if not parameters:
return {
"status": False,
"reason": "Missing <parameters></paraeters> tags inside of <invoke></invoke> tags.",
}
if len(parameters) > 1:
return {
"status": False,
"reason": "More than one set of <parameters></parameters> tags specified inside single set of <invoke></invoke> tags.",
}
# Check for balanced tags inside parameters
tags = re.findall(
r"<.*?>",
parameters[0].replace("<parameters>", "").replace("</parameters>", ""),
re.DOTALL,
)
if len(tags) % 2 != 0:
return {
"status": False,
"reason": "Imbalanced tags inside <parameters></parameters> tags.",
}
# Loop through the tags and check if each even-indexed tag matches the tag in the position after it (with the / of course). If valid store their content for later use.
parameters_with_values = []
for i in range(0, len(tags), 2):
opening_tag = tags[i]
closing_tag = tags[i + 1]
closing_tag_without_second_char = closing_tag[:1] + closing_tag[2:]
if closing_tag[1] != "/" or opening_tag != closing_tag_without_second_char:
return {
"status": False,
"reason": "Non-matching opening and closing tags inside <parameters></parameters> tags.",
}
parameters_with_values.append(
(
opening_tag[1:-1],
re.search(
rf"{opening_tag}(.*?){closing_tag}", parameters[0], re.DOTALL
).group(1),
)
)
# Parse out the full function call
invokes.append(
{
"tool_name": tool_name[0]
.replace("<tool_name>", "")
.replace("</tool_name>", ""),
"parameters_with_values": parameters_with_values,
}
)
return {
"status": True,
"invokes": invokes,
"prefix_content": func_call_prefix_content,
}
def _convert_value(value, type_str):
"""Convert a string value into its appropriate Python data type based on the provided type string.
Arg:
value: the value to convert
type_str: the type to convert the value to
Returns:
The value converted into the requested type or the original value
if the conversion failed.
"""
if type_str in ("list", "dict"):
try:
return ast.literal_eval(value)
except:
return value
if type_str == "string":
type_str = "str"
type_class = getattr(builtins, type_str)
try:
return type_class(value)
except ValueError:
return value
# TODO: Re-organize this file to make it more readable and maintainable
def extract_system_prompt(prompts: list[dict]) -> str:
for i, prompt in enumerate(prompts):
if prompt["role"] == "system":
system_prompt = prompt["content"]
del prompts[i]
return system_prompt
return None
def extract_last_user_message(prompts: list[dict], user_role_name: str = "user") -> dict:
for i in range(len(prompts) - 1, -1, -1):
if prompts[i]["role"] == user_role_name:
last_user_message = prompts[i]
del prompts[i]
return last_user_message
return "User did not specify a query."
#### utils for multi-turn ####
def format_execution_results_prompting(
inference_data: dict, execution_results: list[str], model_response_data: dict
) -> str:
# Add the execution results to one single user message
tool_results = []
for execution_result, decoded_model_response in zip(
execution_results, model_response_data["model_responses_decoded"]
):
tool_results.append(
{"role": "tool", "name": decoded_model_response, "content": execution_result}
)
return repr(tool_results)
def default_decode_ast_prompting(result, language="Python"):
result = result.strip("`\n ")
if not result.startswith("["):
result = "[" + result
if not result.endswith("]"):
result = result + "]"
decoded_output = ast_parse(result, language)
return decoded_output
def default_decode_execute_prompting(result):
result = result.strip("`\n ")
if not result.startswith("["):
result = "[" + result
if not result.endswith("]"):
result = result + "]"
decoded_output = ast_parse(result)
return decoded_output_to_execution_list(decoded_output)
def parse_nested_value(value):
"""
Parse a potentially nested value from the AST output.
Args:
value: The value to parse, which could be a nested dictionary, which includes another function call, or a simple value.
Returns:
str: A string representation of the value, handling nested function calls and nested dictionary function arguments.
"""
if isinstance(value, dict):
# Check if the dictionary represents a function call (i.e., the value is another dictionary or complex structure)
if all(isinstance(v, dict) for v in value.values()):
func_name = list(value.keys())[0]
args = value[func_name]
args_str = ", ".join(f"{k}={parse_nested_value(v)}" for k, v in args.items())
return f"{func_name}({args_str})"
else:
# If it's a simple dictionary, treat it as key-value pairs
return (
"{"
+ ", ".join(f"'{k}': {parse_nested_value(v)}" for k, v in value.items())
+ "}"
)
return repr(value)
def decoded_output_to_execution_list(decoded_output):
"""
Convert decoded output to a list of executable function calls.
Args:
decoded_output (list): A list of dictionaries representing function calls.
Returns:
list: A list of strings, each representing an executable function call.
"""
execution_list = []
for function_call in decoded_output:
for key, value in function_call.items():
args_str = ", ".join(f"{k}={parse_nested_value(v)}" for k, v in value.items())
execution_list.append(f"{key}({args_str})")
return execution_list
|