import json import time from copy import deepcopy from multi_turn_eval.multi_turn_utils import ( STATELESS_CLASSES, execute_multi_turn_func_call, is_empty_execute_response, ) from constant import ( DEFAULT_USER_PROMPT_FOR_ADDITIONAL_FUNCTION_FC, DEFAULT_USER_PROMPT_FOR_ADDITIONAL_FUNCTION_PROMPTING, MAXIMUM_STEP_LIMIT, ) from model_style import ModelStyle from overrides import final class BaseHandler: model_name: str model_style: ModelStyle def __init__(self, model_name, temperature) -> None: self.model_name = model_name # Replace the slash with underscore to avoid creating subdirectories # Replace the dash and dot with underscore for valid variable name self.model_name_underline_replaced = ( model_name.replace("/", "_").replace("-", "_").replace(".", "_") ) self.temperature = temperature self.is_fc_model = False # Whether the model is a function calling model @final def inference(self, test_entry: dict, include_input_log: bool=False, include_state_log: bool=False): # This method is used to retrive model response for each model. return self.inference_multi_turn_FC(test_entry, include_input_log, include_state_log) @final def inference_multi_turn_FC( self, test_entry: dict, include_input_log: bool, include_state_log: bool ): initial_config: dict = test_entry["initial_config"] involved_classes: list = test_entry["involved_classes"] test_entry_id: str = test_entry["id"] test_category: str = test_entry_id.rsplit("_", 1)[0] # This is only for the miss function category # A mapping from turn index to function to holdout holdout_function: dict[int, list] = test_entry.get("missed_function", {}) total_input_token_count: list[list[float]] = [] total_output_token_count: list[list[float]] = [] total_latency: list[list[float]] = [] all_model_response: list[list] = ( [] ) # The model response that will be used for later evaluation all_inference_log: list[list[dict]] = ( [] ) # The debugging log for human to understand force_quit = False # Whether the model has been forced to quit. If True, this whole entry will be failed. # Execute no function call, but just to get a reference to all the instances to get the initial state for logging purpose if include_state_log: _, involved_instances = execute_multi_turn_func_call( [], initial_config, involved_classes, self.model_name_underline_replaced, test_entry_id, long_context=( "long_context" in test_category or "composite" in test_category ), is_evaL_run=False, ) state_log = [] for class_name, class_instance in involved_instances.items(): if class_name in STATELESS_CLASSES: continue class_instance = deepcopy(class_instance) # Avoid modification in future turns state_log.append( { "role": "state_info", "class_name": class_name, "content": { key: value for key, value in vars(class_instance).items() if not key.startswith("_") }, } ) all_inference_log.append(state_log) inference_data: dict = {} inference_data = self._pre_query_processing_FC(inference_data, test_entry) inference_data = self._compile_tools(inference_data, test_entry) all_multi_turn_messages: list[list[dict]] = test_entry["question"] for turn_idx, current_turn_message in enumerate(all_multi_turn_messages): current_turn_message: list[dict] if str(turn_idx) in holdout_function: test_entry["function"].extend(holdout_function[str(turn_idx)]) # Since we have added new functions, we need to recompile the tools inference_data = self._compile_tools(inference_data, test_entry) assert ( len(current_turn_message) == 0 ), "Holdout turn should not have user message." current_turn_message = [ { "role": "user", "content": DEFAULT_USER_PROMPT_FOR_ADDITIONAL_FUNCTION_FC, } ] if turn_idx == 0: inference_data = self.add_first_turn_message_FC( inference_data, current_turn_message ) else: inference_data = self._add_next_turn_user_message_FC( inference_data, current_turn_message ) current_turn_response = [] current_turn_inference_log: list[dict] = {"begin_of_turn_query": current_turn_message} current_turn_input_token_count: list[float] = [] current_turn_output_token_count: list[float] = [] current_turn_latency: list[float] = [] count = 0 while True: print("-" * 100) print( f"ID: {test_entry_id.replace('multi_turn_', '')}, Turn: {turn_idx}, Step: {count}" ) current_step_inference_log: list[dict] = [] # Add to the current_turn_inference_log at beginning of each step so that we don't need to bother dealing with the break statements current_turn_inference_log[f"step_{count}"] = current_step_inference_log start_time = time.time() api_response = self._query_FC(inference_data) query_latency = time.time() - start_time # This part of logging is disabled by default because it is too verbose and will make the result file extremely large # It is only useful to see if the inference pipeline is working as expected (eg, does it convert all the inputs correctly) if include_input_log: current_step_inference_log.append( { "role": "handler_log", "content": inference_data.get("inference_input_log", ""), } ) # Try parsing the model response model_response_data = self._parse_query_response_FC(api_response) model_responses = model_response_data["model_responses"] # Add the assistant message to the chat history inference_data = self._add_assistant_message_FC( inference_data, model_response_data ) # Process the metadata current_turn_input_token_count.append(model_response_data["input_token"]) current_turn_output_token_count.append(model_response_data["output_token"]) current_turn_latency.append(query_latency) current_turn_response.append(model_responses) current_step_inference_log.append( {"role": "assistant", "content": model_responses} ) # Try decoding the model response try: decoded_model_responses = self.decode_execute(model_responses) current_step_inference_log.append( { "role": "handler_log", "content": "Successfully decoded model response.", "model_response_decoded": decoded_model_responses, } ) if is_empty_execute_response(decoded_model_responses): print("Empty response from the model. Proceed to next turn.") current_step_inference_log.append( { "role": "handler_log", "content": f"Empty response from the model. Proceed to next turn.", "model_response_decoded": decoded_model_responses, } ) break except Exception as e: print("Failed to decode the model response. Proceed to next turn.") current_step_inference_log.append( { "role": "handler_log", "content": f"Error decoding the model response. Proceed to next turn.", "error": str(e), } ) yield ("summary", model_responses, None, self.model_name) break # Obtain the execution results execution_results, involved_instances = execute_multi_turn_func_call( decoded_model_responses, initial_config, involved_classes, self.model_name_underline_replaced, test_entry_id, long_context=( "long_context" in test_category or "composite" in test_category ), is_evaL_run=False, ) # Add the execution results to the chat history for the next turn inference_data = self._add_execution_results_FC( inference_data, execution_results, model_response_data ) for execution_result in execution_results: current_step_inference_log.append( { "role": "tool", "content": execution_result, } ) execution_results = deepcopy(execution_results) for i in range(len(execution_results)): if "error" in execution_results[i]: execution_results[i] = execution_results[i].replace("error", "error❗️") yield ("regular", decoded_model_responses, execution_results, self.model_name) count += 1 # Force quit after too many steps if count > MAXIMUM_STEP_LIMIT: force_quit = True current_step_inference_log.append( { "role": "handler_log", "content": f"Model has been forced to quit after {MAXIMUM_STEP_LIMIT} steps.", } ) break # Add to the total list all_model_response.append(current_turn_response) all_inference_log.append(current_turn_inference_log) total_input_token_count.append(current_turn_input_token_count) total_output_token_count.append(current_turn_output_token_count) total_latency.append(current_turn_latency) if include_state_log: state_log = [] for class_name, class_instance in involved_instances.items(): if class_name in STATELESS_CLASSES: continue class_instance = deepcopy(class_instance) # Avoid modification in future turns state_log.append( { "role": "state_info", "class_name": class_name, "content": { key: value for key, value in vars(class_instance).items() if not key.startswith("_") }, } ) all_inference_log.append(state_log) if force_quit: break metadata = { "input_token_count": total_input_token_count, "output_token_count": total_output_token_count, "latency": total_latency, "inference_log": all_inference_log, } yield ("final", current_round_response, inference_data, involved_instances) def decode_ast(self, result, language="Python"): # This method takes raw model output and convert it to standard AST checker input. raise NotImplementedError def decode_execute(self, result): # This method takes raw model output and convert it to standard execute checker input. raise NotImplementedError #### FC methods #### def _query_FC(self, inference_data: dict): """ Call the model API in FC mode to get the response. Return the response object that can be used to feed into the decode method. """ raise NotImplementedError def _pre_query_processing_FC(self, inference_data: dict, test_entry: dict) -> dict: """ Preprocess the testset entry before sending it to the model. This includes transforming the input user message into the format expected by the model, and any other necessary preprocessing steps. The inference_data dict is updated in place and returned. """ raise NotImplementedError def _compile_tools(self, inference_data: dict, test_entry: dict) -> dict: """ Compile the tools from the test entry and add them to the inference data. This method is used to prepare the tools for the model query in FC mode. The inference_data dict is updated in place and returned. """ raise NotImplementedError def _parse_query_response_FC(self, api_response: any) -> dict: """ Parses the raw response from the model API to extract the result, input token count, and output token count. Args: api_response (any): The raw response from the model API. Returns: A dict containing the following elements: - model_responses (any): The parsed result that can be directly used as input to the decode method. - input_token (int): The number of tokens used in the input to the model. - output_token (int): The number of tokens generated by the model as output. - tool_call_ids (list[str]): The IDs of the tool calls that are generated by the model. Optional. - Any other metadata that is specific to the model. """ raise NotImplementedError def add_first_turn_message_FC( self, inference_data: dict, first_turn_message: list[dict] ) -> dict: """ Add the first turn message to the chat history. """ raise NotImplementedError def _add_next_turn_user_message_FC( self, inference_data: dict, user_message: list[dict] ) -> dict: """ [Only for multi-turn] Add next turn user message to the chat history for query. user_message is a list of 1 element, which is the user message. """ raise NotImplementedError def _add_assistant_message_FC( self, inference_data: dict, model_response_data: dict ) -> dict: """ Add assistant message to the chat history. """ raise NotImplementedError def _add_execution_results_FC( self, inference_data: dict, execution_results: list[str], model_response_data: dict ) -> dict: """ Add the execution results to the chat history to prepare for the next turn of query. Some models may need to add additional information to the chat history, such as tool call IDs. """ raise NotImplementedError #### Prompting methods #### def _query_prompting(self, inference_data: dict): """ Call the model API in prompting mode to get the response. Return the response object that can be used to feed into the decode method. """ raise NotImplementedError def _pre_query_processing_prompting(self, test_entry: dict) -> dict: """ Preprocess the testset entry before sending it to the model. Returns a dict that contains all the necessary information for the query method. `tools` and `message` must be included in the returned dict. Things like `system_prompt` and `chat_history` are optional, specific to the model. """ raise NotImplementedError def _parse_query_response_prompting(self, api_response: any) -> dict: """ Parses the raw response from the model API to extract the result, input token count, and output token count. Args: api_response (any): The raw response from the model API. Returns: A dict containing the following elements: - model_responses (any): The parsed result that can be directly used as input to the decode method. - input_token (int): The number of tokens used in the input to the model. - output_token (int): The number of tokens generated by the model as output. - tool_call_ids (list[str]): The IDs of the tool calls that are generated by the model. Optional. - Any other metadata that is specific to the model. """ raise NotImplementedError def add_first_turn_message_prompting( self, inference_data: dict, first_turn_message: list[dict] ) -> dict: """ Add the first turn message to the chat history. """ raise NotImplementedError def _add_next_turn_user_message_prompting( self, inference_data: dict, user_message: list[dict] ) -> dict: """ [Only for multi-turn] Add next turn user message to the chat history for query. user_message is a list of 1 element, which is the user message. """ raise NotImplementedError def _add_assistant_message_prompting( self, inference_data: dict, model_response_data: dict ) -> dict: """ Add assistant message to the chat history. """ raise NotImplementedError def _add_execution_results_prompting( self, inference_data: dict, execution_results: list[str], model_response_data: dict ) -> dict: """ Add the execution results to the chat history to prepare for the next turn of query. Some models may need to add additional information to the chat history, such as tool call IDs. """ raise NotImplementedError