Spaces:
Running
Running
VictorGuichard
commited on
Commit
β’
b05bca3
1
Parent(s):
87f1c89
Remove typo
Browse filesFixed a small typo for SmolVLM (Lnaguage -> Language) :)
README.md
CHANGED
@@ -14,7 +14,7 @@ This is the home for smol models (SmolLM) and high quality pre-training datasets
|
|
14 |
- [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia): the largest open synthetic dataset, with 25B tokens and 30M samples. It contains synthetic textbooks, blog posts, and stories, posts generated by Mixtral. Blog post available [here](https://huggingface.co/blog/cosmopedia).
|
15 |
- [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus): the pre-training corpus of SmolLM: **Cosmopedia v0.2**, **FineWeb-Edu dedup** and **Python-Edu**. Blog post available [here](https://huggingface.co/blog/smollm).
|
16 |
- [SmolLM models](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966) and [SmolLM2 models](https://huggingface.co/collections/HuggingFaceTB/smollm2-checkpoints-6723884218bcda64b34d7db9): a series of strong small models in three sizes: 135M, 360M and 1.7B
|
17 |
-
- [SmolVLM](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct): a 2 billion Vision
|
18 |
|
19 |
**News ποΈ**
|
20 |
- SmolLM2: you can find our most capable model SmolLM2-1.7B here: https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct and our training and evaluation toolkit at: https://github.com/huggingface/smollm
|
|
|
14 |
- [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia): the largest open synthetic dataset, with 25B tokens and 30M samples. It contains synthetic textbooks, blog posts, and stories, posts generated by Mixtral. Blog post available [here](https://huggingface.co/blog/cosmopedia).
|
15 |
- [Smollm-Corpus](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus): the pre-training corpus of SmolLM: **Cosmopedia v0.2**, **FineWeb-Edu dedup** and **Python-Edu**. Blog post available [here](https://huggingface.co/blog/smollm).
|
16 |
- [SmolLM models](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966) and [SmolLM2 models](https://huggingface.co/collections/HuggingFaceTB/smollm2-checkpoints-6723884218bcda64b34d7db9): a series of strong small models in three sizes: 135M, 360M and 1.7B
|
17 |
+
- [SmolVLM](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct): a 2 billion Vision Language Model (VLM) built for on-device inference. It uses SmolLM2-1.7B as a language backbone. Blog post available [here](https://huggingface.co/blog/smolvlm).
|
18 |
|
19 |
**News ποΈ**
|
20 |
- SmolLM2: you can find our most capable model SmolLM2-1.7B here: https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct and our training and evaluation toolkit at: https://github.com/huggingface/smollm
|