Spaces:
Sleeping
Sleeping
File size: 1,394 Bytes
4d4c631 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from transformers import pipeline
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2")
import json
with open("tasks.json", "r",encoding="utf-8") as json_file:
global data
data = json.load(json_file)
def find_index(sentence):
global data
for key, value in data.items():
for i,j in value.items():
for s in j:
if sentence == s:
return i
for x,item in data.items():
texts = []
for key,value in item.items():
for each in value:
print(find_index(each))
texts.append(each)
globals()[f"faiss_{x}"] = FAISS.from_texts(texts,HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",model_kwargs={'device':'cpu'}))
from fastapi import FastAPI
app = FastAPI()
@app.get("/")
def transcribe_the_command(audio_path,state):
transcript = pipe(audio_path)["text"]
similar = globals()[f"faiss_{state}"].similarity_search(transcript)[0].page_content
print(similar)
reply = find_index(similar)
return reply
import gradio as gr
iface = gr.Interface(
fn=transcribe_the_command,
inputs=[gr.Textbox(),gr.Textbox()],
outputs="text",
title="Whisper Small",
description="Realtime demo for intent recognition using a Whisper small model.",
)
iface.launch(share="true") |