Spaces:
Runtime error
Runtime error
File size: 2,224 Bytes
b0b1ade c49f2a7 7c7805e 62ff93b 571322c 7c7805e 571322c a4fa720 7c7805e c482354 7c7805e 571322c d14d221 adcf092 7c7805e 2105e0b 963f3fd aac73e4 963f3fd aac73e4 ba51995 aac73e4 963f3fd 7c7805e 39e3e24 7c7805e b0b1ade 7c7805e bbb0ce5 b0b1ade 7d2b240 b0b1ade ef798a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
from transformers import pipeline
asr_pipe = pipeline("automatic-speech-recognition", model="Abdullah17/whisper-small-urdu")
from difflib import SequenceMatcher
# List of commands
commands = [
"نمائندے ایجنٹ نمائندہ",
" سم ایکٹیویٹ ",
" سم بلاک بند ",
"موبائل پیکیجز انٹرنیٹ پیکیج",
" چالان جمع ",
]
replies = [
"کیا آپ پیکیجز کی معلومات حاصل کرنا چاہتے ہیں؟","کیا آپ سم بلاک کرنا چاہتے ہیں؟","کیا آپ سم ایکٹیویٹ کرنا چاہتے ہیں؟" ,"کیا آپ نمائندے سے بات کرنا چاہتے ہیں؟",
"کیا آپ چالان جمع کروانا چاہتے ہیں؟"
]
# Function to find the most similar command
def find_most_similar_command(statement, command_list):
best_match = None
highest_similarity = 0
i=0
for command in command_list:
similarity = SequenceMatcher(None, statement, command).ratio()
print(similarity)
if similarity > highest_similarity:
highest_similarity = similarity
best_match = command
reply=replies[i]
i+=1
return best_match,reply
def transcribe_the_command(audio):
import soundfile as sf
sample_rate, audio_data = audio
file_name = "recorded_audio.wav"
sf.write(file_name, audio_data, sample_rate)
# Convert stereo to mono by averaging the two channels
print(file_name)
transcript = asr_pipe(file_name)["text"]
most_similar_command,reply = find_most_similar_command(transcript, commands)
print(f"Given Statement: {transcript}")
print(f"Most Similar Command: {most_similar_command}\n")
print(reply)
return reply
# get_text_from_voice("urdu.wav")
import gradio as gr
iface = gr.Interface(
fn=transcribe_the_command,
inputs=gr.inputs.Audio(label="Recorded Audio",source="microphone"),
outputs="text",
title="Whisper Small Urdu Command",
description="Realtime demo for Urdu speech recognition using a fine-tuned Whisper small model and outputting the estimated command on the basis of speech transcript.",
)
iface.launch() |