Spaces:
Runtime error
Runtime error
File size: 1,583 Bytes
b0b1ade 7c7805e b0b1ade 7c7805e b0b1ade 7c7805e b0b1ade 7c7805e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from transformers import pipeline
asr_pipe = pipeline("automatic-speech-recognition", model="ihanif/whisper-medium-urdu")
from difflib import SequenceMatcher
# List of commands
commands = [
"کمپیوٹر، کھیل کھیلو",
"میوزک چلاؤ",
"روشنی کم کریں"
]
replies = [
"https://medicobilling.info/urdu.wav",
"download.wav",
"https://medicobilling.info/urdu.wav"
]
# Function to find the most similar command
def find_most_similar_command(statement, command_list):
best_match = None
highest_similarity = 0
i=0
for command in command_list:
similarity = SequenceMatcher(None, statement, command).ratio()
if similarity > highest_similarity:
highest_similarity = similarity
best_match = command
reply=replies[i]
i+=1
else:
best_match="unknown"
reply="unknown.wav"
return best_match,reply
def transcribe_the_command(audio_path):
transcript = asr_pipe(audio_path)["text"]
most_similar_command,reply = find_most_similar_command(transcript, commands)
print(f"Given Statement: {transcript}")
print(f"Most Similar Command: {most_similar_command}\n")
return reply
# get_text_from_voice("urdu.wav")
import gradio as gr
iface = gr.Interface(
fn=transcribe_the_command,
inputs=gr.Audio(source="microphone"),
outputs="text",
title="Whisper Small Hindi",
description="Realtime demo for Hindi speech recognition using a fine-tuned Whisper small model.",
)
iface.launch(share="true") |