Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
asr_pipe = pipeline("automatic-speech-recognition", model="Abdullah17/whisper-small-urdu") | |
from difflib import SequenceMatcher | |
import json | |
import socket | |
def get_local_ip(): | |
try: | |
# Create a socket connection to a remote host (here, google.com) | |
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) | |
s.connect(("8.8.8.8", 80)) | |
local_ip = s.getsockname()[0] | |
s.close() | |
return local_ip | |
except Exception as e: | |
print(f"Error getting local IP: {e}") | |
return None | |
with open("tasks.json", "r",encoding="utf-8") as json_file: | |
urdu_data = json.load(json_file) | |
# List of commands | |
# commands = [ | |
# "نمائندے ایجنٹ نمائندہ", | |
# " سم ایکٹیویٹ ", | |
# " سم بلاک بند ", | |
# "موبائل پیکیجز انٹرنیٹ پیکیج", | |
# " چالان جمع چلان", | |
# " گانا " | |
# ] | |
# replies = [ | |
# 1,2, | |
# ] | |
# Function to find the most similar command | |
def find_most_similar_command(statement, command_list): | |
best_match = None | |
highest_similarity = 0 | |
i=0 | |
for sub_list in command_list: | |
for command in sub_list: | |
similarity = SequenceMatcher(None, statement, command).ratio() | |
print(i,"similarity",similarity) | |
if similarity > highest_similarity: | |
highest_similarity = similarity | |
best_match = command | |
reply=i | |
i+=1 | |
return best_match,reply | |
def send_data_to_db(order_id,col_name): | |
import requests | |
# API endpoint URL | |
url = 'https://pizzahut.softinfix.tech/api/save_order/'+order_id | |
# Data to send (in dictionary format) | |
data = { | |
col_name: col_value, | |
} | |
# Send POST request with data | |
response = requests.post(url, data=data) | |
# Print response | |
print(response.status_code) | |
print(response.text) | |
def transcribe_the_command(audio,menu_id,order_id,db_col="0"): | |
local_ip = get_local_ip() | |
if local_ip: | |
print(f"Local IP Address: {local_ip}") | |
else: | |
print("Local IP could not be determined.") | |
import soundfile as sf | |
sample_rate, audio_data = audio | |
file_name = "recorded_audio.wav" | |
sf.write(file_name, audio_data, sample_rate) | |
# Convert stereo to mono by averaging the two channels | |
print(menu_id) | |
transcript = asr_pipe(file_name)["text"] | |
if menu_id == "transcript_only": | |
reply=transcript | |
print(reply) | |
else: | |
commands=urdu_data[menu_id] | |
print(commands) | |
most_similar_command,reply = find_most_similar_command(transcript, commands) | |
print(f"Given Statement: {transcript}") | |
print(f"Most Similar Command: {most_similar_command}\n") | |
print(reply) | |
return reply | |
# get_text_from_voice("urdu.wav") | |
import gradio as gr | |
iface = gr.Interface( | |
fn=transcribe_the_command, | |
inputs=[gr.inputs.Audio(label="Recorded Audio",source="microphone"),gr.inputs.Textbox(label="id"),gr.inputs.Textbox(label="col_name(optional)")], | |
outputs="text", | |
title="Whisper Small Urdu Command", | |
description="Realtime demo for Urdu speech recognition using a fine-tuned Whisper small model and outputting the estimated command on the basis of speech transcript.", | |
) | |
iface.launch() |