Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
asr_pipe = pipeline("automatic-speech-recognition", model="Abdullah17/whisper-small-urdu") | |
from difflib import SequenceMatcher | |
# List of commands | |
commands = [ | |
"نمائندے ایجنٹ نمائندہ", | |
" سم ایکٹیویٹ ", | |
" سم بلاک بند ", | |
"موبائل پیکیجز انٹرنیٹ پیکیج", | |
" چالان جمع ", | |
] | |
# replies = [ | |
# 1,2, | |
# ] | |
# Function to find the most similar command | |
def find_most_similar_command(statement, command_list): | |
best_match = None | |
highest_similarity = 0 | |
i=0 | |
for command in command_list: | |
similarity = SequenceMatcher(None, statement, command).ratio() | |
print(similarity) | |
if similarity > highest_similarity: | |
highest_similarity = similarity | |
best_match = command | |
reply=i | |
i+=1 | |
return best_match,reply | |
def transcribe_the_command(audio): | |
import soundfile as sf | |
sample_rate, audio_data = audio | |
file_name = "recorded_audio.wav" | |
sf.write(file_name, audio_data, sample_rate) | |
# Convert stereo to mono by averaging the two channels | |
print(file_name) | |
transcript = asr_pipe(file_name)["text"] | |
most_similar_command,reply = find_most_similar_command(transcript, commands) | |
print(f"Given Statement: {transcript}") | |
print(f"Most Similar Command: {most_similar_command}\n") | |
print(reply) | |
return reply | |
# get_text_from_voice("urdu.wav") | |
import gradio as gr | |
iface = gr.Interface( | |
fn=transcribe_the_command, | |
inputs=gr.inputs.Audio(label="Recorded Audio",source="microphone"), | |
outputs="text", | |
title="Whisper Small Urdu Command", | |
description="Realtime demo for Urdu speech recognition using a fine-tuned Whisper small model and outputting the estimated command on the basis of speech transcript.", | |
) | |
iface.launch() |