whisperaudio / app.py
Hunzla's picture
Update app.py
391f586
from transformers import pipeline
asr_pipe = pipeline("automatic-speech-recognition", model="Abdullah17/whisper-small-urdu")
from difflib import SequenceMatcher
import json
with open("tasks.json", "r",encoding="utf-8") as json_file:
urdu_data = json.load(json_file)
# List of commands
# commands = [
# "نمائندے ایجنٹ نمائندہ",
# " سم ایکٹیویٹ ",
# " سم بلاک بند ",
# "موبائل پیکیجز انٹرنیٹ پیکیج",
# " چالان جمع چلان",
# " گانا "
# ]
# replies = [
# 1,2,
# ]
# Function to find the most similar command
def find_most_similar_command(statement, command_list):
best_match = None
highest_similarity = 0
reply=404
# Using globals() to create a global variable
for index,file_list in command_list.items():
for command in file_list:
similarity = SequenceMatcher(None, statement, command).ratio()
print(index,"similarity",similarity)
if similarity > highest_similarity:
highest_similarity = similarity
best_match = command
reply=index
return best_match,reply
def transcribe_the_command(audio,menu_id,abc):
import soundfile as sf
sample_rate, audio_data = audio
file_name = "recorded_audio.wav"
sf.write(file_name, audio_data, sample_rate)
# Convert stereo to mono by averaging the two channels
print(menu_id)
transcript = asr_pipe(file_name)["text"]
commands=urdu_data[menu_id]
print(commands)
most_similar_command,reply = find_most_similar_command(transcript, commands)
print(f"Given Statement: {transcript}")
print(f"Most Similar Command: {most_similar_command}\n")
print(reply)
return reply
# get_text_from_voice("urdu.wav")
import gradio as gr
iface = gr.Interface(
fn=transcribe_the_command,
inputs=[gr.inputs.Audio(label="Recorded Audio",source="microphone"),gr.inputs.Textbox(label="menu_id"),gr.inputs.Textbox(label="dfs")],
outputs="text",
title="Whisper Small Urdu Command",
description="Realtime demo for Urdu speech recognition using a fine-tuned Whisper small model and outputting the estimated command on the basis of speech transcript.",
)
iface.launch()