Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -32,35 +32,54 @@ def find_most_similar_command(statement, command_list):
|
|
32 |
i+=1
|
33 |
|
34 |
return best_match,reply
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
import soundfile as sf
|
38 |
sample_rate, audio_data = audio
|
39 |
file_name = "recorded_audio.wav"
|
40 |
sf.write(file_name, audio_data, sample_rate)
|
41 |
# Convert stereo to mono by averaging the two channels
|
42 |
-
print(
|
43 |
|
44 |
transcript = asr_pipe(file_name)["text"]
|
45 |
-
if
|
46 |
reply=transcript
|
47 |
print(reply)
|
48 |
else:
|
49 |
-
commands=urdu_data[
|
50 |
print(commands)
|
51 |
most_similar_command,reply = find_most_similar_command(transcript, commands)
|
52 |
print(f"Given Statement: {transcript}")
|
53 |
print(f"Most Similar Command: {most_similar_command}\n")
|
54 |
print(reply)
|
55 |
-
|
56 |
-
return reply
|
57 |
# get_text_from_voice("urdu.wav")
|
58 |
import gradio as gr
|
59 |
|
60 |
|
61 |
iface = gr.Interface(
|
62 |
fn=transcribe_the_command,
|
63 |
-
inputs=[gr.inputs.Audio(label="Recorded Audio",source="microphone"),gr.inputs.Textbox(label="id")],
|
64 |
outputs="text",
|
65 |
title="Whisper Small Urdu Command",
|
66 |
description="Realtime demo for Urdu speech recognition using a fine-tuned Whisper small model and outputting the estimated command on the basis of speech transcript.",
|
|
|
32 |
i+=1
|
33 |
|
34 |
return best_match,reply
|
35 |
+
|
36 |
+
|
37 |
+
def send_data_to_db(order_id,col_name):
|
38 |
+
import requests
|
39 |
+
|
40 |
+
# API endpoint URL
|
41 |
+
url = 'https://pizzahut.softinfix.tech/api/save_order/'+order_id
|
42 |
+
|
43 |
+
# Data to send (in dictionary format)
|
44 |
+
data = {
|
45 |
+
col_name: col_value,
|
46 |
+
}
|
47 |
+
|
48 |
+
# Send POST request with data
|
49 |
+
response = requests.post(url, data=data)
|
50 |
+
|
51 |
+
# Print response
|
52 |
+
print(response.status_code)
|
53 |
+
print(response.text)
|
54 |
+
|
55 |
+
def transcribe_the_command(audio,menu_id,order_id,db_col="0"):
|
56 |
|
57 |
import soundfile as sf
|
58 |
sample_rate, audio_data = audio
|
59 |
file_name = "recorded_audio.wav"
|
60 |
sf.write(file_name, audio_data, sample_rate)
|
61 |
# Convert stereo to mono by averaging the two channels
|
62 |
+
print(menu_id)
|
63 |
|
64 |
transcript = asr_pipe(file_name)["text"]
|
65 |
+
if menu_id == "transcript_only":
|
66 |
reply=transcript
|
67 |
print(reply)
|
68 |
else:
|
69 |
+
commands=urdu_data[menu_id]
|
70 |
print(commands)
|
71 |
most_similar_command,reply = find_most_similar_command(transcript, commands)
|
72 |
print(f"Given Statement: {transcript}")
|
73 |
print(f"Most Similar Command: {most_similar_command}\n")
|
74 |
print(reply)
|
75 |
+
return reply
|
|
|
76 |
# get_text_from_voice("urdu.wav")
|
77 |
import gradio as gr
|
78 |
|
79 |
|
80 |
iface = gr.Interface(
|
81 |
fn=transcribe_the_command,
|
82 |
+
inputs=[gr.inputs.Audio(label="Recorded Audio",source="microphone"),gr.inputs.Textbox(label="id"),,gr.inputs.Textbox(label="col_name(optional)")],
|
83 |
outputs="text",
|
84 |
title="Whisper Small Urdu Command",
|
85 |
description="Realtime demo for Urdu speech recognition using a fine-tuned Whisper small model and outputting the estimated command on the basis of speech transcript.",
|