Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,60 @@
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
iface = gr.Interface(
|
11 |
-
fn=
|
12 |
-
inputs=gr.Audio(source="microphone", type="filepath"),
|
13 |
outputs="text",
|
14 |
-
title="Whisper
|
15 |
-
description="
|
16 |
)
|
17 |
|
18 |
-
iface.launch()
|
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
+
from pyannote.core import Annotation
|
4 |
+
from pydub import AudioSegment
|
5 |
+
import torchaudio
|
6 |
+
from pyannote.audio import Pipeline
|
7 |
|
8 |
+
diarization_pipe = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1",
|
9 |
+
use_auth_token="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") # change to "your-username/the-name-you-picked"
|
10 |
|
11 |
+
|
12 |
+
|
13 |
+
# Load the speech-to-text model (Whisper)
|
14 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="SyedAunZaidi/whisper-small-hi")
|
15 |
+
|
16 |
+
def transcribe_with_diarization(audio_path):
|
17 |
+
# Get speaker segments using the diarization model
|
18 |
+
diarization_result = diarization_pipe(audio_path)
|
19 |
+
|
20 |
+
# Extract speaker segments and transcribe them using Whisper ASR
|
21 |
+
transcripts = []
|
22 |
+
for track, segment,speaker in diarization_result.itertracks(yield_label=True):
|
23 |
+
|
24 |
+
print(segment)
|
25 |
+
print(speaker)
|
26 |
+
|
27 |
+
start_time = track.start
|
28 |
+
end_time = track.end
|
29 |
+
print(start_time)
|
30 |
+
print(end_time)
|
31 |
+
label = segment # Extract the label manually
|
32 |
+
waveform, sample_rate = torchaudio.load("/content/drive/MyDrive/recording.mp3", normalize=True)
|
33 |
+
start_sample = int(start_time * sample_rate)
|
34 |
+
end_sample = int(end_time * sample_rate)
|
35 |
+
print(waveform)
|
36 |
+
interval_audio = waveform[:,start_sample:end_sample]
|
37 |
+
# Export the interval audio as a temporary WAV file
|
38 |
+
torchaudio.save("interval_audio.wav", interval_audio,sample_rate)
|
39 |
+
transcript = asr_pipe("interval_audio.wav")
|
40 |
+
print(transcript)
|
41 |
+
start_time = segment.start
|
42 |
+
end_time = segment.end
|
43 |
+
label = track[0].label() # Extract the label manually
|
44 |
+
speaker_audio = audio_path + f"[{start_time:.2f},{end_time:.2f}]"
|
45 |
+
transcript = asr_pipe(speaker_audio)[0]["text"]
|
46 |
+
transcripts.append(transcript)
|
47 |
+
|
48 |
+
# Combine the transcriptions from all speakers
|
49 |
+
text = " ".join(transcripts)
|
50 |
+
return text
|
51 |
|
52 |
iface = gr.Interface(
|
53 |
+
fn=transcribe_with_diarization,
|
54 |
+
inputs=gr.Audio(source="microphone", type="filepath", filetype="wav"),
|
55 |
outputs="text",
|
56 |
+
title="Whisper Large Hindi with Speaker Diarization",
|
57 |
+
description="Real-time demo for Hindi speech recognition using a fine-tuned Whisper large model with speaker diarization.",
|
58 |
)
|
59 |
|
60 |
+
iface.launch()
|