Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,53 @@
|
|
1 |
from transformers import pipeline
|
2 |
-
|
3 |
-
from difflib import SequenceMatcher
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
|
|
6 |
commands = [
|
7 |
"نمائندے ایجنٹ نمائندہ",
|
8 |
-
"
|
9 |
-
"
|
10 |
"موبائل پیکیجز انٹرنیٹ پیکیج",
|
11 |
-
"
|
12 |
-
"
|
13 |
]
|
14 |
-
|
15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# ]
|
17 |
-
#
|
|
|
|
|
|
|
18 |
def find_most_similar_command(statement, command_list):
|
19 |
best_match = None
|
20 |
highest_similarity = 0
|
@@ -29,21 +62,7 @@ def find_most_similar_command(statement, command_list):
|
|
29 |
i+=1
|
30 |
|
31 |
return best_match,reply
|
32 |
-
|
33 |
-
import soundfile as sf
|
34 |
-
sample_rate, audio_data = audio
|
35 |
-
file_name = "recorded_audio.wav"
|
36 |
-
sf.write(file_name, audio_data, sample_rate)
|
37 |
-
# Convert stereo to mono by averaging the two channels
|
38 |
-
print(file_name)
|
39 |
-
|
40 |
-
transcript = asr_pipe(file_name)["text"]
|
41 |
-
most_similar_command,reply = find_most_similar_command(transcript, commands)
|
42 |
-
print(f"Given Statement: {transcript}")
|
43 |
-
print(f"Most Similar Command: {most_similar_command}\n")
|
44 |
-
print(reply)
|
45 |
-
|
46 |
-
return reply
|
47 |
# get_text_from_voice("urdu.wav")
|
48 |
import gradio as gr
|
49 |
|
|
|
1 |
from transformers import pipeline
|
2 |
+
import soundfile as sf
|
|
|
3 |
|
4 |
+
# Load ASR model
|
5 |
+
asr_model = "Abdullah17/whisper-small-urdu"
|
6 |
+
asr_pipe = pipeline("automatic-speech-recognition", model=asr_model)
|
7 |
+
|
8 |
+
# Rest of your code
|
9 |
commands = [
|
10 |
"نمائندے ایجنٹ نمائندہ",
|
11 |
+
"سم ایکٹیویٹ",
|
12 |
+
"سم بلاک بند",
|
13 |
"موبائل پیکیجز انٹرنیٹ پیکیج",
|
14 |
+
"چالان جمع",
|
15 |
+
"گانا سنانا"
|
16 |
]
|
17 |
+
|
18 |
+
# Function to transcribe the command from audio
|
19 |
+
def transcribe_the_command(audio_list):
|
20 |
+
transcriptions = []
|
21 |
+
|
22 |
+
# Process each audio in the batch
|
23 |
+
for audio_data, sample_rate in audio_list:
|
24 |
+
file_name = "recorded_audio.wav"
|
25 |
+
sf.write(file_name, audio_data, sample_rate)
|
26 |
+
|
27 |
+
# Convert stereo to mono by averaging the two channels
|
28 |
+
transcript = asr_pipe(file_name)[0]["text"]
|
29 |
+
most_similar_command, reply = find_most_similar_command(transcript, commands)
|
30 |
+
|
31 |
+
transcriptions.append((transcript, most_similar_command, reply))
|
32 |
+
|
33 |
+
return transcriptions
|
34 |
+
# from transformers import pipeline
|
35 |
+
# asr_pipe = pipeline("automatic-speech-recognition", model="Abdullah17/whisper-small-urdu")
|
36 |
+
# from difflib import SequenceMatcher
|
37 |
+
|
38 |
+
# # List of commands
|
39 |
+
# commands = [
|
40 |
+
# "نمائندے ایجنٹ نمائندہ",
|
41 |
+
# " سم ایکٹیویٹ ",
|
42 |
+
# " سم بلاک بند ",
|
43 |
+
# "موبائل پیکیجز انٹرنیٹ پیکیج",
|
44 |
+
# " چالان جمع ",
|
45 |
+
# " گانا سنانا"
|
46 |
# ]
|
47 |
+
# # replies = [
|
48 |
+
# # 1,2,
|
49 |
+
# # ]
|
50 |
+
# # Function to find the most similar command
|
51 |
def find_most_similar_command(statement, command_list):
|
52 |
best_match = None
|
53 |
highest_similarity = 0
|
|
|
62 |
i+=1
|
63 |
|
64 |
return best_match,reply
|
65 |
+
# x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# get_text_from_voice("urdu.wav")
|
67 |
import gradio as gr
|
68 |
|