from transformers import pipeline asr_pipe = pipeline("automatic-speech-recognition", model="Abdullah17/whisper-small-urdu") from difflib import SequenceMatcher import json with open("tasks.json", "r",encoding="utf-8") as json_file: urdu_data = json.load(json_file) # List of commands # commands = [ # "نمائندے ایجنٹ نمائندہ", # " سم ایکٹیویٹ ", # " سم بلاک بند ", # "موبائل پیکیجز انٹرنیٹ پیکیج", # " چالان جمع چلان", # " گانا " # ] # replies = [ # 1,2, # ] # Function to find the most similar command def find_most_similar_command(statement, command_list): best_match = None highest_similarity = 0 for index,sub_list in command_list: for command in sub_list: similarity = SequenceMatcher(None, statement, command).ratio() print(i,"similarity",similarity) if similarity > highest_similarity: highest_similarity = similarity best_match = command reply=index return best_match,reply def transcribe_the_command(audio,menu_id): import soundfile as sf sample_rate, audio_data = audio file_name = "recorded_audio.wav" sf.write(file_name, audio_data, sample_rate) # Convert stereo to mono by averaging the two channels print(menu_id) transcript = asr_pipe(file_name)["text"] commands=urdu_data[menu_id] print(commands) most_similar_command,reply = find_most_similar_command(transcript, commands) print(f"Given Statement: {transcript}") print(f"Most Similar Command: {most_similar_command}\n") print(reply) return reply # get_text_from_voice("urdu.wav") import gradio as gr iface = gr.Interface( fn=transcribe_the_command, inputs=[gr.inputs.Audio(label="Recorded Audio",source="microphone"),gr.inputs.Textbox(label="menu_id")], outputs="text", title="Whisper Small Urdu Command", description="Realtime demo for Urdu speech recognition using a fine-tuned Whisper small model and outputting the estimated command on the basis of speech transcript.", ) iface.launch()