File size: 6,306 Bytes
d7b89b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import glob
import h5py
import numpy as np
from torch.utils.data import Dataset
import os
import json
from PointWOLF import PointWOLF


def load_data(partition):
    all_data = []
    all_label = []
    for h5_name in glob.glob('./data/modelnet40_ply_hdf5_2048/ply_data_%s*.h5' % partition):
        f = h5py.File(h5_name)
        data = f['data'][:].astype('float32')
        label = f['label'][:].astype('int64')
        f.close()
        all_data.append(data)
        all_label.append(label)
    all_data = np.concatenate(all_data, axis=0)
    all_label = np.concatenate(all_label, axis=0)
    return all_data, all_label


def pc_normalize(pc):
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
    pc = pc / m
    return pc


def translate_pointcloud(pointcloud):
    xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
    xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])

    translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
    return translated_pointcloud


def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02):
    N, C = pointcloud.shape
    pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip)
    return pointcloud


# =========== ModelNet40 =================
class ModelNet40(Dataset):
    def __init__(self, num_points, partition='train', args=None):
        self.data, self.label = load_data(partition)
        self.num_points = num_points
        self.partition = partition
        self.PointWOLF = PointWOLF(args) if args is not None else None


    def __getitem__(self, item):
        pointcloud = self.data[item][:self.num_points]
        label = self.label[item]
        if self.partition == 'train':
            np.random.shuffle(pointcloud)
            if self.PointWOLF is not None:
                _, pointcloud = self.PointWOLF(pointcloud)
        return pointcloud, label

    def __len__(self):
        return self.data.shape[0]

# =========== ShapeNet Part =================
class PartNormalDataset(Dataset):
    def __init__(self, npoints=2500, split='train', normalize=False):
        self.npoints = npoints
        self.root = './data/shapenetcore_partanno_segmentation_benchmark_v0_normal'
        self.catfile = os.path.join(self.root, 'synsetoffset2category.txt')
        self.cat = {}
        self.normalize = normalize

        with open(self.catfile, 'r') as f:
            for line in f:
                ls = line.strip().split()
                self.cat[ls[0]] = ls[1]
        self.cat = {k: v for k, v in self.cat.items()}

        self.meta = {}
        with open(os.path.join(self.root, 'train_test_split', 'shuffled_train_file_list.json'), 'r') as f:
            train_ids = set([str(d.split('/')[2]) for d in json.load(f)])
        with open(os.path.join(self.root, 'train_test_split', 'shuffled_val_file_list.json'), 'r') as f:
            val_ids = set([str(d.split('/')[2]) for d in json.load(f)])
        with open(os.path.join(self.root, 'train_test_split', 'shuffled_test_file_list.json'), 'r') as f:
            test_ids = set([str(d.split('/')[2]) for d in json.load(f)])
        for item in self.cat:
            self.meta[item] = []
            dir_point = os.path.join(self.root, self.cat[item])
            fns = sorted(os.listdir(dir_point))

            if split == 'trainval':
                fns = [fn for fn in fns if ((fn[0:-4] in train_ids) or (fn[0:-4] in val_ids))]
            elif split == 'train':
                fns = [fn for fn in fns if fn[0:-4] in train_ids]
            elif split == 'val':
                fns = [fn for fn in fns if fn[0:-4] in val_ids]
            elif split == 'test':
                fns = [fn for fn in fns if fn[0:-4] in test_ids]
            else:
                print('Unknown split: %s. Exiting..' % (split))
                exit(-1)

            for fn in fns:
                token = (os.path.splitext(os.path.basename(fn))[0])
                self.meta[item].append(os.path.join(dir_point, token + '.txt'))

        self.datapath = []
        for item in self.cat:
            for fn in self.meta[item]:
                self.datapath.append((item, fn))

        self.classes = dict(zip(self.cat, range(len(self.cat))))
        # Mapping from category ('Chair') to a list of int [10,11,12,13] as segmentation labels
        self.seg_classes = {'Earphone': [16, 17, 18], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43],
                            'Car': [8, 9, 10, 11], 'Laptop': [28, 29], 'Cap': [6, 7], 'Skateboard': [44, 45, 46],
                            'Mug': [36, 37], 'Guitar': [19, 20, 21], 'Bag': [4, 5], 'Lamp': [24, 25, 26, 27],
                            'Table': [47, 48, 49], 'Airplane': [0, 1, 2, 3], 'Pistol': [38, 39, 40],
                            'Chair': [12, 13, 14, 15], 'Knife': [22, 23]}

        self.cache = {}  # from index to (point_set, cls, seg) tuple
        self.cache_size = 20000

    def __getitem__(self, index):
        if index in self.cache:
            point_set, normal, seg, cls = self.cache[index]
        else:
            fn = self.datapath[index]
            cat = self.datapath[index][0]
            cls = self.classes[cat]
            cls = np.array([cls]).astype(np.int32)
            data = np.loadtxt(fn[1]).astype(np.float32)
            point_set = data[:, 0:3]
            normal = data[:, 3:6]
            seg = data[:, -1].astype(np.int32)
            if len(self.cache) < self.cache_size:
                self.cache[index] = (point_set, normal, seg, cls)

        if self.normalize:
            point_set = pc_normalize(point_set)

        choice = np.random.choice(len(seg), self.npoints, replace=True)

        # resample
        # note that the number of points in some points clouds is less than 2048, thus use random.choice
        # remember to use the same seed during train and test for a getting stable result
        point_set = point_set[choice, :]
        seg = seg[choice]
        normal = normal[choice, :]

        return point_set, cls, seg, normal

    def __len__(self):
        return len(self.datapath)


if __name__ == '__main__':
    train = ModelNet40(1024)
    test = ModelNet40(1024, 'test')
    for data, label in train:
        print(data.shape)
        print(label.shape)