Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# this code modify from https://huggingface.co/spaces/lykeven/visualglm-6b | |
import gradio as gr | |
import re | |
from PIL import Image | |
import torch | |
from io import BytesIO | |
import hashlib | |
import os | |
from transformers import LlamaForCausalLM, LlamaTokenizer, BlipImageProcessor, BitsAndBytesConfig, AutoModelForCausalLM | |
DESCRIPTION = '''# <a href="https://huggingface.co/IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1">Ziya-Blip2-14B</a>''' | |
MAINTENANCE_NOTICE1 = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.\nHint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.' | |
MAINTENANCE_NOTICE2 = '提示1: 如果应用报了“Something went wrong, connection error out”的错误,请关闭代理并重试。\n提示2: 如果你上传了很大的图片,比如10MB大小,那将需要一些时间来上传和处理,请耐心等待。' | |
NOTES = 'This app is adapted from <a href="https://huggingface.co/IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1">https://huggingface.co/IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1</a>. It would be recommended to check out the repo if you want to see the detail of our model. And most of the codes attach to this demo are modify from <a href="https://huggingface.co/spaces/lykeven/visualglm-6b">lykeven/visualglm-6b</a>.' | |
import json | |
default_chatbox = [] | |
def is_chinese(text): | |
zh_pattern = re.compile(u'[\u4e00-\u9fa5]+') | |
return zh_pattern.search(text) | |
AUTH_TOKEN = os.getenv("AUTH_TOKEN") | |
LM_MODEL_PATH = "wuxiaojun/Ziya-LLaMA-13B-v1" | |
# LM_MODEL_PATH = "/cognitive_comp/wuxiaojun/pretrained/pytorch/huggingface/Ziya-LLaMA-13B-v1" | |
lm_model = LlamaForCausalLM.from_pretrained( | |
LM_MODEL_PATH, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
use_auth_token=AUTH_TOKEN, | |
quantization_config=BitsAndBytesConfig(load_in_4bit=True)) | |
TOKENIZER_PATH = "IDEA-CCNL/Ziya-LLaMA-13B-v1" | |
# TOKENIZER_PATH = "/cognitive_comp/wuxiaojun/pretrained/pytorch/huggingface/Ziya-LLaMA-13B-v1" | |
# tokenizer = LlamaTokenizer.from_pretrained(LM_MODEL_PATH, use_auth_token=AUTH_TOKEN) | |
tokenizer = LlamaTokenizer.from_pretrained(TOKENIZER_PATH) | |
# visual model | |
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073] | |
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711] | |
# demo.py is in the project path, so we can use local path ".". Otherwise you should use "IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1" | |
visual_model_path = "IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1" | |
# visual_model_path = "/cognitive_comp/wuxiaojun/pretrained/pytorch/huggingface/Ziya-BLIP2-14B-Visual-v1" | |
model = AutoModelForCausalLM.from_pretrained( | |
visual_model_path, | |
trust_remote_code=True, use_auth_token=AUTH_TOKEN, | |
torch_dtype=torch.float16) | |
model.cuda() # if you use on cpu, comment this line | |
model.language_model = lm_model | |
image_size = model.config.vision_config.image_size | |
image_processor = BlipImageProcessor( | |
size={"height": image_size, "width": image_size}, | |
image_mean=OPENAI_CLIP_MEAN, | |
image_std=OPENAI_CLIP_STD, | |
) | |
def post( | |
input_text, | |
temperature, | |
top_p, | |
image_prompt, | |
result_previous, | |
hidden_image | |
): | |
result_text = [(ele[0], ele[1]) for ele in result_previous] | |
previous_querys = [] | |
previous_outputs = [] | |
for i in range(len(result_text)-1, -1, -1): | |
if result_text[i][0] == "": | |
del result_text[i] | |
else: | |
previous_querys.append(result_text[i][0]) | |
previous_outputs.append(result_text[i][1]) | |
is_zh = is_chinese(input_text) | |
if image_prompt is None: | |
print("Image empty") | |
if is_zh: | |
result_text.append((input_text, '图片为空!请上传图片并重试。')) | |
else: | |
result_text.append((input_text, 'Image empty! Please upload a image and retry.')) | |
return input_text, result_text, hidden_image | |
elif input_text == "": | |
print("Text empty") | |
result_text.append((input_text, 'Text empty! Please enter text and retry.')) | |
return "", result_text, hidden_image | |
generate_config = { | |
"max_new_tokens": 128, | |
"top_p": top_p, | |
"temperature": temperature, | |
"repetition_penalty": 1.18, | |
} | |
img = Image.open(image_prompt) | |
pixel_values = image_processor( | |
img, | |
return_tensors="pt").pixel_values.to( | |
model.device).to(model.dtype) | |
output_buffer = BytesIO() | |
img.save(output_buffer, "PNG") | |
byte_data = output_buffer.getvalue() | |
md = hashlib.md5() | |
md.update(byte_data) | |
img_hash = md.hexdigest() | |
if img_hash != hidden_image: | |
previous_querys = [] | |
previous_outputs = [] | |
result_text = [] | |
answer = model.chat( | |
tokenizer=tokenizer, | |
pixel_values=pixel_values, | |
query=input_text, | |
previous_querys=previous_querys, | |
previous_outputs=previous_outputs, | |
**generate_config, | |
) | |
result_text.append((input_text, answer)) | |
print(result_text) | |
return "", result_text, img_hash | |
def clear_fn(value): | |
return "", default_chatbox, None | |
def clear_fn2(value): | |
return default_chatbox | |
def io_fn(a, b, c): | |
print(f"call io_fn") | |
return a, b | |
def change_language(value): | |
if value == "Change hint to English": | |
return "提示变为中文", MAINTENANCE_NOTICE1 | |
else: | |
return "Change hint to English", MAINTENANCE_NOTICE2 | |
def main(): | |
gr.close_all() | |
examples = [] | |
with open("./examples/example_inputs.jsonl") as f: | |
for line in f: | |
data = json.loads(line) | |
examples.append(data) | |
with gr.Blocks(css='style.css') as demo: | |
with gr.Row(): | |
with gr.Column(scale=4.5): | |
with gr.Group(): | |
input_text = gr.Textbox(label='Input Text', placeholder='Please enter text prompt below and press ENTER.') | |
with gr.Row(): | |
run_button = gr.Button('Generate') | |
clear_button = gr.Button('Clear') | |
image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None) | |
with gr.Row(): | |
temperature = gr.Slider(maximum=1, value=0.7, minimum=0, label='Temperature') | |
top_p = gr.Slider(maximum=1, value=0.1, minimum=0, label='Top P') | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(scale=7): | |
maintenance_notice = gr.Markdown(MAINTENANCE_NOTICE1) | |
with gr.Column(scale=2): | |
change_button = gr.Button('Change hint to English', visible=False) | |
with gr.Column(scale=5.5): | |
result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[]).style(height=550) | |
hidden_image_hash = gr.Textbox(visible=False) | |
gr_examples = gr.Examples(examples=[[example["text"], example["image"]] for example in examples], | |
inputs=[input_text, image_prompt], | |
label="Example Inputs (Click to insert an examplet into the input box)", | |
examples_per_page=3) | |
gr.Markdown(NOTES) | |
print(gr.__version__) | |
run_button.click(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text, hidden_image_hash], | |
outputs=[input_text, result_text, hidden_image_hash]) | |
input_text.submit(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text, hidden_image_hash], | |
outputs=[input_text, result_text, hidden_image_hash]) | |
clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt]) | |
image_prompt.upload(fn=clear_fn2, inputs=clear_button, outputs=[result_text]) | |
image_prompt.clear(fn=clear_fn2, inputs=clear_button, outputs=[result_text]) | |
print(gr.__version__) | |
demo.queue(concurrency_count=10) | |
demo.launch(server_name="0.0.0.0") | |
if __name__ == '__main__': | |
main() |