import os from rank_bm25 import BM25Okapi from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering import torch import gradio as gr from docx import Document import pdfplumber # Load the fine-tuned BERT-based QA model and tokenizer model_name = "IProject-10/roberta-base-finetuned-squad2" # Replace with your model name qa_model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Set up the device for BERT device = torch.device("cuda" if torch.cuda.is_available() else "cpu") qa_model.to(device) qa_model.eval() # Create a pipeline for retrieval-augmented QA retrieval_qa_pipeline = pipeline( "question-answering", model=qa_model, tokenizer=tokenizer, device=device.index if torch.cuda.is_available() else -1 ) def extract_text_from_file(file): # Determine the file extension file_extension = os.path.splitext(file.name)[1].lower() text = "" try: if file_extension == ".txt": with open(file.name, "r") as f: text = f.read() elif file_extension == ".docx": doc = Document(file.name) for para in doc.paragraphs: text += para.text + "\n" elif file_extension == ".pdf": with pdfplumber.open(file.name) as pdf: for page in pdf.pages: text += page.extract_text() + "\n" else: raise ValueError("Unsupported file format: {}".format(file_extension)) except Exception as e: text = str(e) return text def load_passages(files): passages = [] for file in files: passage = extract_text_from_file(file) passages.append(passage) return passages def highlight_answer(context, answer): start_index = context.find(answer) if start_index != -1: end_index = start_index + len(answer) highlighted_context = f"{context[:start_index]}_________<<{context[start_index:end_index]}>>_________{context[end_index:]}" return highlighted_context else: return context def answer_question(question, files): try: # Load passages from the uploaded files passages = load_passages(files) # Create an index using BM25 bm25 = BM25Okapi([passage.split() for passage in passages]) # Retrieve relevant passages using BM25 tokenized_query = question.split() candidate_passages = bm25.get_top_n(tokenized_query, passages, n=3) bm25_scores = bm25.get_scores(tokenized_query) # Extract answer using the pipeline for each candidate passage answers_with_context = [] for passage in candidate_passages: answer = retrieval_qa_pipeline(question=question, context=passage) bm25_score = bm25_scores[passages.index(passage)] answer_with_context = { "context": passage, "answer": answer["answer"], "BM25-score": bm25_score # BM25 confidence score for this passage } answers_with_context.append(answer_with_context) # Choose the answer with the highest model confidence score best_answer = max(answers_with_context, key=lambda x: x["BM25-score"]) # Highlight the answer in the context highlighted_context = highlight_answer(best_answer["context"], best_answer["answer"]) return best_answer["answer"], highlighted_context, best_answer["BM25-score"] except Exception as e: return str(e), "", "" # Description md = """ ### Brief Overview of the project: A Document-Retrieval QA application built by training **[RoBERTa model](https://arxiv.org/pdf/1907.11692)** on **[SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/)** dataset for efficient answer extraction and the system is augmented by using NLP based **[BM25](https://www.researchgate.net/publication/220613776_The_Probabilistic_Relevance_Framework_BM25_and_Beyond)** retriever for information retrieval from a large text corpus. The project is a brief enhancement and augmentation to the work done in the research paper **Encoder-based LLMs: Building QA systems and Comparative Analysis**. In this paper we study about BERT and its advanced variants and learn to build an efficient answer extraction QA system from scratch. The built system can be used in information retrieval system and search engines. **Objectives of the projects:** 1. Build a simple Answer Extraction QA system using **RoBERTa-base**: The project is deployed public url objective1. 2. Building a Information Retrieval system for data augmentation using **BM25** 3. **Document Retrieval QA** system by merging Answer Extraction QA system and Information retrieval system ### Demonstrating working of the Application: