Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from flash_vstream.serve.demo import Chat, title_markdown, block_css | |
from flash_vstream.constants import * | |
from flash_vstream.conversation import conv_templates, Conversation | |
import os | |
from PIL import Image | |
import tempfile | |
import imageio | |
import shutil | |
model_path = "IVGSZ/Flash-VStream-7b" | |
load_8bit = False | |
load_4bit = False | |
def save_image_to_local(image): | |
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg') | |
image = Image.open(image) | |
image.save(filename) | |
return filename | |
def save_video_to_local(video_path): | |
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4') | |
shutil.copyfile(video_path, filename) | |
return filename | |
def generate(video, textbox_in, first_run, state, state_, images_tensor): | |
flag = 1 | |
if not textbox_in: | |
if len(state_.messages) > 0: | |
textbox_in = state_.messages[-1][1] | |
state_.messages.pop(-1) | |
flag = 0 | |
else: | |
return "Please enter instruction" | |
video = video if video else "none" | |
if type(state) is not Conversation: | |
state = conv_templates[conv_mode].copy() | |
state_ = conv_templates[conv_mode].copy() | |
images_tensor = [] | |
first_run = False if len(state.messages) > 0 else True | |
text_en_in = textbox_in.replace("picture", "image") | |
image_processor = handler.image_processor | |
if os.path.exists(video): | |
video_tensor = handler._get_rawvideo_dec(video, image_processor, max_frames=MAX_IMAGE_LENGTH) | |
images_tensor = image_processor(video_tensor, return_tensors='pt')['pixel_values'].to(handler.model.device, dtype=torch.float16) | |
print("video_tensor", video_tensor.shape) | |
if os.path.exists(video): | |
text_en_in = DEFAULT_IMAGE_TOKEN + '\n' + text_en_in | |
text_en_out, state_ = handler.generate(images_tensor, text_en_in, first_run=first_run, state=state_) | |
state_.messages[-1] = (state_.roles[1], text_en_out) | |
text_en_out = text_en_out.split('#')[0] | |
textbox_out = text_en_out | |
show_images = "" | |
if os.path.exists(video): | |
filename = save_video_to_local(video) | |
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={filename}"></video>' | |
if flag: | |
state.append_message(state.roles[0], textbox_in + "\n" + show_images) | |
state.append_message(state.roles[1], textbox_out) | |
return (state, state_, state.to_gradio_chatbot(), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=None, interactive=True)) | |
def regenerate(state, state_): | |
state.messages.pop(-1) | |
state_.messages.pop(-1) | |
if len(state.messages) > 0: | |
return state, state_, state.to_gradio_chatbot(), False | |
return (state, state_, state.to_gradio_chatbot(), True) | |
def clear_history(state, state_): | |
state = conv_templates[conv_mode].copy() | |
state_ = conv_templates[conv_mode].copy() | |
return (gr.update(value=None, interactive=True), \ | |
gr.update(value=None, interactive=True),\ | |
True, state, state_, state.to_gradio_chatbot(), []) | |
conv_mode = "vicuna_v1" | |
handler = Chat(model_path, conv_mode=conv_mode, load_4bit=load_4bit, load_8bit=load_8bit) | |
if not os.path.exists("temp"): | |
os.makedirs("temp") | |
print(torch.cuda.memory_allocated()) | |
print(torch.cuda.max_memory_allocated()) | |
with gr.Blocks(title='Flash-VStream', theme=gr.themes.Soft(), css=block_css) as demo: | |
gr.Markdown(title_markdown) | |
state = gr.State() | |
state_ = gr.State() | |
first_run = gr.State() | |
images_tensor = gr.State() | |
with gr.Row(): | |
with gr.Column(scale=3): | |
video = gr.Video(label="Input Video") | |
with gr.Column(scale=7): | |
chatbot = gr.Chatbot(label="Flash-VStream", bubble_full_width=True).style(height=700) | |
with gr.Row(): | |
with gr.Column(scale=8): | |
textbox = gr.Textbox(show_label=False, | |
placeholder="Enter text and press Send", | |
container=False) | |
with gr.Column(scale=2, min_width=50): | |
submit_btn = gr.Button(value="Send", variant="primary", interactive=True) | |
with gr.Row(visible=True) as button_row: | |
regenerate_btn = gr.Button(value="π Regenerate", interactive=True) | |
clear_btn = gr.Button(value="ποΈ Clear history", interactive=True) | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
with gr.Row(): | |
gr.Examples( | |
examples=[ | |
[ | |
f"{cur_dir}/examples/video1.mp4", | |
"Describe the video briefly.", | |
] | |
], | |
inputs=[video, textbox], | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
f"{cur_dir}/examples/video4.mp4", | |
"What is the boy doing?", | |
] | |
], | |
inputs=[video, textbox], | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
f"{cur_dir}/examples/video5.mp4", | |
"Why is this video funny?", | |
] | |
], | |
inputs=[video, textbox], | |
) | |
submit_btn.click(generate, [video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, video]) | |
regenerate_btn.click(regenerate, [state, state_], [state, state_, chatbot, first_run]).then( | |
generate, [video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, video]) | |
clear_btn.click(clear_history, [state, state_], | |
[video, textbox, first_run, state, state_, chatbot, images_tensor]) | |
# app = gr.mount_gradio_app(app, demo, path="/") | |
demo.launch() |