IceClear commited on
Commit
a68feeb
1 Parent(s): 2abaa1b
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. StableSR/.gitignore +134 -0
  2. StableSR/LICENSE.txt +35 -0
  3. StableSR/README.md +175 -0
  4. StableSR/basicsr/__init__.py +12 -0
  5. StableSR/basicsr/archs/__init__.py +24 -0
  6. StableSR/basicsr/archs/arch_util.py +352 -0
  7. StableSR/basicsr/archs/basicvsr_arch.py +336 -0
  8. StableSR/basicsr/archs/basicvsrpp_arch.py +417 -0
  9. StableSR/basicsr/archs/degradat_arch.py +90 -0
  10. StableSR/basicsr/archs/dfdnet_arch.py +169 -0
  11. StableSR/basicsr/archs/dfdnet_util.py +162 -0
  12. StableSR/basicsr/archs/discriminator_arch.py +150 -0
  13. StableSR/basicsr/archs/duf_arch.py +276 -0
  14. StableSR/basicsr/archs/ecbsr_arch.py +275 -0
  15. StableSR/basicsr/archs/edsr_arch.py +61 -0
  16. StableSR/basicsr/archs/edvr_arch.py +382 -0
  17. StableSR/basicsr/archs/hifacegan_arch.py +260 -0
  18. StableSR/basicsr/archs/hifacegan_util.py +255 -0
  19. StableSR/basicsr/archs/inception.py +307 -0
  20. StableSR/basicsr/archs/rcan_arch.py +135 -0
  21. StableSR/basicsr/archs/ridnet_arch.py +180 -0
  22. StableSR/basicsr/archs/rrdbnet_arch.py +119 -0
  23. StableSR/basicsr/archs/spynet_arch.py +96 -0
  24. StableSR/basicsr/archs/srresnet_arch.py +65 -0
  25. StableSR/basicsr/archs/srvgg_arch.py +70 -0
  26. StableSR/basicsr/archs/stylegan2_arch.py +799 -0
  27. StableSR/basicsr/archs/stylegan2_bilinear_arch.py +614 -0
  28. StableSR/basicsr/archs/swinir_arch.py +956 -0
  29. StableSR/basicsr/archs/tof_arch.py +172 -0
  30. StableSR/basicsr/archs/vgg_arch.py +161 -0
  31. StableSR/basicsr/data/__init__.py +101 -0
  32. StableSR/basicsr/data/data_sampler.py +48 -0
  33. StableSR/basicsr/data/data_util.py +362 -0
  34. StableSR/basicsr/data/degradations.py +935 -0
  35. StableSR/basicsr/data/ffhq_dataset.py +80 -0
  36. StableSR/basicsr/data/ffhq_degradation_dataset.py +231 -0
  37. StableSR/basicsr/data/paired_image_dataset.py +115 -0
  38. StableSR/basicsr/data/prefetch_dataloader.py +122 -0
  39. StableSR/basicsr/data/realesrgan_dataset.py +242 -0
  40. StableSR/basicsr/data/realesrgan_paired_dataset.py +114 -0
  41. StableSR/basicsr/data/reds_dataset.py +352 -0
  42. StableSR/basicsr/data/single_image_dataset.py +164 -0
  43. StableSR/basicsr/data/transforms.py +240 -0
  44. StableSR/basicsr/data/video_test_dataset.py +283 -0
  45. StableSR/basicsr/data/vimeo90k_dataset.py +199 -0
  46. StableSR/basicsr/losses/__init__.py +31 -0
  47. StableSR/basicsr/losses/basic_loss.py +253 -0
  48. StableSR/basicsr/losses/gan_loss.py +207 -0
  49. StableSR/basicsr/losses/loss_util.py +145 -0
  50. StableSR/basicsr/metrics/README.md +48 -0
StableSR/.gitignore ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ignored folders
2
+ logs/*
3
+ models/*
4
+ src/
5
+ results/
6
+ wandb/
7
+ output/
8
+
9
+ *.DS_Store
10
+ .idea
11
+
12
+ # ignored files
13
+ version.py
14
+
15
+ # ignored files with suffix
16
+ *.html
17
+ *.png
18
+ *.jpeg
19
+ *.jpg
20
+ *.gif
21
+ *.pth
22
+ *.zip
23
+ # *.txt
24
+ *.svg
25
+ *.ckpt
26
+
27
+ # template
28
+
29
+ # Byte-compiled / optimized / DLL files
30
+ __pycache__/
31
+ *.py[cod]
32
+ *$py.class
33
+
34
+ # C extensions
35
+ *.so
36
+
37
+ # Distribution / packaging
38
+ .Python
39
+ build/
40
+ develop-eggs/
41
+ dist/
42
+ downloads/
43
+ eggs/
44
+ .eggs/
45
+ lib/
46
+ lib64/
47
+ parts/
48
+ sdist/
49
+ var/
50
+ wheels/
51
+ *.egg-info/
52
+ .installed.cfg
53
+ *.egg
54
+ MANIFEST
55
+
56
+ # PyInstaller
57
+ # Usually these files are written by a python script from a template
58
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
59
+ *.manifest
60
+ *.spec
61
+
62
+ # Installer logs
63
+ pip-log.txt
64
+ pip-delete-this-directory.txt
65
+
66
+ # Unit test / coverage reports
67
+ htmlcov/
68
+ .tox/
69
+ .coverage
70
+ .coverage.*
71
+ .cache
72
+ nosetests.xml
73
+ coverage.xml
74
+ *.cover
75
+ .hypothesis/
76
+ .pytest_cache/
77
+
78
+ # Translations
79
+ *.mo
80
+ *.pot
81
+
82
+ # Django stuff:
83
+ *.log
84
+ local_settings.py
85
+ db.sqlite3
86
+
87
+ # Flask stuff:
88
+ instance/
89
+ .webassets-cache
90
+
91
+ # Scrapy stuff:
92
+ .scrapy
93
+
94
+ # Sphinx documentation
95
+ docs/_build/
96
+
97
+ # PyBuilder
98
+ target/
99
+
100
+ # Jupyter Notebook
101
+ .ipynb_checkpoints
102
+
103
+ # pyenv
104
+ .python-version
105
+
106
+ # celery beat schedule file
107
+ celerybeat-schedule
108
+
109
+ # SageMath parsed files
110
+ *.sage.py
111
+
112
+ # Environments
113
+ .env
114
+ .venv
115
+ env/
116
+ venv/
117
+ ENV/
118
+ env.bak/
119
+ venv.bak/
120
+
121
+ # Spyder project settings
122
+ .spyderproject
123
+ .spyproject
124
+
125
+ # Rope project settings
126
+ .ropeproject
127
+
128
+ # mkdocs documentation
129
+ /site
130
+
131
+ # mypy
132
+ .mypy_cache/
133
+
134
+ outputs/
StableSR/LICENSE.txt ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ S-Lab License 1.0
2
+
3
+ Copyright 2022 S-Lab
4
+
5
+ Redistribution and use for non-commercial purpose in source and
6
+ binary forms, with or without modification, are permitted provided
7
+ that the following conditions are met:
8
+
9
+ 1. Redistributions of source code must retain the above copyright
10
+ notice, this list of conditions and the following disclaimer.
11
+
12
+ 2. Redistributions in binary form must reproduce the above copyright
13
+ notice, this list of conditions and the following disclaimer in
14
+ the documentation and/or other materials provided with the
15
+ distribution.
16
+
17
+ 3. Neither the name of the copyright holder nor the names of its
18
+ contributors may be used to endorse or promote products derived
19
+ from this software without specific prior written permission.
20
+
21
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
+ HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
+
33
+ In the event that redistribution and/or use for commercial purpose in
34
+ source or binary forms, with or without modification is required,
35
+ please contact the contributor(s) of the work.
StableSR/README.md ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center">
2
+ <img src="https://user-images.githubusercontent.com/22350795/236680126-0b1cdd62-d6fc-4620-b998-75ed6c31bf6f.png" height=40>
3
+ </p>
4
+
5
+ ## Exploiting Diffusion Prior for Real-World Image Super-Resolution
6
+
7
+ [Paper](https://arxiv.org/abs/2305.07015) | [Project Page](https://iceclear.github.io/projects/stablesr/) | [Video](https://www.youtube.com/watch?v=5MZy9Uhpkw4) | [WebUI](https://github.com/pkuliyi2015/sd-webui-stablesr) | [ModelScope](https://modelscope.cn/models/xhlin129/cv_stablesr_image-super-resolution/summary)
8
+
9
+
10
+ <a href="https://colab.research.google.com/drive/11SE2_oDvbYtcuHDbaLAxsKk_o3flsO1T?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/cjwbw/stablesr) ![visitors](https://visitor-badge.laobi.icu/badge?page_id=IceClear/StableSR)
11
+
12
+
13
+ [Jianyi Wang](https://iceclear.github.io/), [Zongsheng Yue](https://zsyoaoa.github.io/), [Shangchen Zhou](https://shangchenzhou.com/), [Kelvin C.K. Chan](https://ckkelvinchan.github.io/), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/)
14
+
15
+ S-Lab, Nanyang Technological University
16
+
17
+ <img src="assets/network.png" width="800px"/>
18
+
19
+ :star: If StableSR is helpful to your images or projects, please help star this repo. Thanks! :hugs:
20
+
21
+ ### Update
22
+ - **2023.07.31**: Integrated to :rocket: [Replicate](https://replicate.com/explore). Try out online demo! [![Replicate](https://img.shields.io/badge/Demo-%F0%9F%9A%80%20Replicate-blue)](https://replicate.com/cjwbw/stablesr) Thank [Chenxi](https://github.com/chenxwh) for the implementation!
23
+ - **2023.07.16**: You may reproduce the LDM baseline used in our paper using [LDM-SRtuning](https://github.com/IceClear/LDM-SRtuning) [![GitHub Stars](https://img.shields.io/github/stars/IceClear/LDM-SRtuning?style=social)](https://github.com/IceClear/LDM-SRtuning).
24
+ - **2023.07.14**: :whale: [**ModelScope**](https://modelscope.cn/models/xhlin129/cv_stablesr_image-super-resolution/summary) for StableSR is released!
25
+ - **2023.06.30**: :whale: [**New model**](https://huggingface.co/Iceclear/StableSR/blob/main/stablesr_768v_000139.ckpt) trained on [SD-2.1-768v](https://huggingface.co/stabilityai/stable-diffusion-2-1) is released! Better performance with fewer artifacts!
26
+ - **2023.06.28**: Support training on SD-2.1-768v.
27
+ - **2023.05.22**: :whale: Improve the code to save more GPU memory, now 128 --> 512 needs 8.9G. Enable start from intermediate steps.
28
+ - **2023.05.20**: :whale: The [**WebUI**](https://github.com/pkuliyi2015/sd-webui-stablesr) [![GitHub Stars](https://img.shields.io/github/stars/pkuliyi2015/sd-webui-stablesr?style=social)](https://github.com/pkuliyi2015/sd-webui-stablesr) of StableSR is available. Thank [Li Yi](https://github.com/pkuliyi2015) for the implementation!
29
+ - **2023.05.13**: Add Colab demo of StableSR. <a href="https://colab.research.google.com/drive/11SE2_oDvbYtcuHDbaLAxsKk_o3flsO1T?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>
30
+ - **2023.05.11**: Repo is released.
31
+
32
+ ### TODO
33
+ - [ ] HuggingFace demo (If necessary)
34
+ - [x] ~~Code release~~
35
+ - [x] ~~Update link to paper and project page~~
36
+ - [x] ~~Pretrained models~~
37
+ - [x] ~~Colab demo~~
38
+ - [x] ~~StableSR-768v released~~
39
+ - [x] ~~Replicate demo~~
40
+
41
+ ### Demo on real-world SR
42
+
43
+ [<img src="assets/imgsli_1.jpg" height="223px"/>](https://imgsli.com/MTc2MTI2) [<img src="assets/imgsli_2.jpg" height="223px"/>](https://imgsli.com/MTc2MTE2) [<img src="assets/imgsli_3.jpg" height="223px"/>](https://imgsli.com/MTc2MTIw)
44
+ [<img src="assets/imgsli_8.jpg" height="223px"/>](https://imgsli.com/MTc2MjUy) [<img src="assets/imgsli_4.jpg" height="223px"/>](https://imgsli.com/MTc2MTMy) [<img src="assets/imgsli_5.jpg" height="223px"/>](https://imgsli.com/MTc2MTMz)
45
+ [<img src="assets/imgsli_9.jpg" height="214px"/>](https://imgsli.com/MTc2MjQ5) [<img src="assets/imgsli_6.jpg" height="214px"/>](https://imgsli.com/MTc2MTM0) [<img src="assets/imgsli_7.jpg" height="214px"/>](https://imgsli.com/MTc2MTM2) [<img src="assets/imgsli_10.jpg" height="214px"/>](https://imgsli.com/MTc2MjU0)
46
+
47
+ For more evaluation, please refer to our [paper](https://arxiv.org/abs/2305.07015) for details.
48
+
49
+ ### Demo on 4K Results
50
+
51
+ - StableSR is capable of achieving arbitrary upscaling in theory, below is a 8x example with a result beyond 4K (5120x3680).
52
+ The example image is taken from [here](https://github.com/Mikubill/sd-webui-controlnet/blob/main/tests/images/ski.jpg).
53
+
54
+ [<img src="assets/imgsli_11.jpg" width="800px"/>](https://imgsli.com/MTc4NDk2)
55
+
56
+ - We further directly test StableSR on AIGC and compared with several diffusion-based upscalers following the suggestions.
57
+ A 4K demo is [here](https://imgsli.com/MTc4MDg3), which is a 4x SR on the image from [here](https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111).
58
+ More comparisons can be found [here](https://github.com/IceClear/StableSR/issues/2).
59
+
60
+ ### Dependencies and Installation
61
+ - Pytorch == 1.12.1
62
+ - CUDA == 11.7
63
+ - pytorch-lightning==1.4.2
64
+ - xformers == 0.0.16 (Optional)
65
+ - Other required packages in `environment.yaml`
66
+ ```
67
+ # git clone this repository
68
+ git clone https://github.com/IceClear/StableSR.git
69
+ cd StableSR
70
+
71
+ # Create a conda environment and activate it
72
+ conda env create --file environment.yaml
73
+ conda activate stablesr
74
+
75
+ # Install xformers
76
+ conda install xformers -c xformers/label/dev
77
+
78
+ # Install taming & clip
79
+ pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
80
+ pip install -e git+https://github.com/openai/CLIP.git@main#egg=clip
81
+ pip install -e .
82
+ ```
83
+
84
+ ### Running Examples
85
+
86
+ #### Train
87
+ Download the pretrained Stable Diffusion models from [[HuggingFace](https://huggingface.co/stabilityai/stable-diffusion-2-1-base)]
88
+
89
+ - Train Time-aware encoder with SFT: set the ckpt_path in config files ([Line 22](https://github.com/IceClear/StableSR/blob/main/configs/stableSRNew/v2-finetune_text_T_512.yaml#L22) and [Line 55](https://github.com/IceClear/StableSR/blob/main/configs/stableSRNew/v2-finetune_text_T_512.yaml#L55))
90
+ ```
91
+ python main.py --train --base configs/stableSRNew/v2-finetune_text_T_512.yaml --gpus GPU_ID, --name NAME --scale_lr False
92
+ ```
93
+
94
+ - Train CFW: set the ckpt_path in config files ([Line 6](https://github.com/IceClear/StableSR/blob/main/configs/autoencoder/autoencoder_kl_64x64x4_resi.yaml#L6)).
95
+
96
+ You need to first generate training data using the finetuned diffusion model in the first stage. The data folder should be like this:
97
+ ```
98
+ CFW_trainingdata/
99
+ └── inputs
100
+ └── 00000001.png # LQ images, (512, 512, 3) (resize to 512x512)
101
+ └── ...
102
+ └── gts
103
+ └── 00000001.png # GT images, (512, 512, 3) (512x512)
104
+ └── ...
105
+ └── latents
106
+ └── 00000001.npy # Latent codes (N, 4, 64, 64) of HR images generated by the diffusion U-net, saved in .npy format.
107
+ └── ...
108
+ └── samples
109
+ └── 00000001.png # The HR images generated from latent codes, just to make sure the generated latents are correct.
110
+ └── ...
111
+ ```
112
+
113
+ Then you can train CFW:
114
+ ```
115
+ python main.py --train --base configs/autoencoder/autoencoder_kl_64x64x4_resi.yaml --gpus GPU_ID, --name NAME --scale_lr False
116
+ ```
117
+
118
+ #### Resume
119
+
120
+ ```
121
+ python main.py --train --base configs/stableSRNew/v2-finetune_text_T_512.yaml --gpus GPU_ID, --resume RESUME_PATH --scale_lr False
122
+ ```
123
+
124
+ #### Test directly
125
+
126
+ Download the Diffusion and autoencoder pretrained models from [[HuggingFace](https://huggingface.co/Iceclear/StableSR/blob/main/README.md) | [Google Drive](https://drive.google.com/drive/folders/1FBkW9FtTBssM_42kOycMPE0o9U5biYCl?usp=sharing) | [OneDrive](https://entuedu-my.sharepoint.com/:f:/g/personal/jianyi001_e_ntu_edu_sg/Et5HPkgRyyxNk269f5xYCacBpZq-bggFRCDbL9imSQ5QDQ)].
127
+ We use the same color correction scheme introduced in paper by default.
128
+ You may change ```--colorfix_type wavelet``` for better color correction.
129
+ You may also disable color correction by ```--colorfix_type nofix```
130
+
131
+ - Test on 128 --> 512: You need at least 10G GPU memory to run this script (batchsize 2 by default)
132
+ ```
133
+ python scripts/sr_val_ddpm_text_T_vqganfin_old.py --config configs/stableSRNew/v2-finetune_text_T_512.yaml --ckpt CKPT_PATH --vqgan_ckpt VQGANCKPT_PATH --init-img INPUT_PATH --outdir OUT_DIR --ddpm_steps 200 --dec_w 0.5 --colorfix_type adain
134
+ ```
135
+ - Test on arbitrary size w/o chop for autoencoder (for results beyond 512): The memory cost depends on your image size, but is usually above 10G.
136
+ ```
137
+ python scripts/sr_val_ddpm_text_T_vqganfin_oldcanvas.py --config configs/stableSRNew/v2-finetune_text_T_512.yaml --ckpt CKPT_PATH --vqgan_ckpt VQGANCKPT_PATH --init-img INPUT_PATH --outdir OUT_DIR --ddpm_steps 200 --dec_w 0.5 --colorfix_type adain
138
+ ```
139
+
140
+ - Test on arbitrary size w/ chop for autoencoder: Current default setting needs at least 18G to run, you may reduce the autoencoder tile size by setting ```--vqgantile_size``` and ```--vqgantile_stride```.
141
+ Note the min tile size is 512 and the stride should be smaller than the tile size. A smaller size may introduce more border artifacts.
142
+ ```
143
+ python scripts/sr_val_ddpm_text_T_vqganfin_oldcanvas_tile.py --config configs/stableSRNew/v2-finetune_text_T_512.yaml --ckpt CKPT_PATH --vqgan_ckpt VQGANCKPT_PATH --init-img INPUT_PATH --outdir OUT_DIR --ddpm_steps 200 --dec_w 0.5 --colorfix_type adain
144
+ ```
145
+
146
+ - For test on 768 model, you need to set ```--config configs/stableSRNew/v2-finetune_text_T_768v.yaml```, ```--input_size 768``` and ```--ckpt```. You can also adjust ```--tile_overlap```, ```--vqgantile_size``` and ```--vqgantile_stride``` accordingly. We did not finetune CFW.
147
+
148
+ #### Test using Replicate API
149
+ ```
150
+ import replicate
151
+ model = replicate.models.get(<model_name>)
152
+ model.predict(input_image=...)
153
+ ```
154
+ You may see [here](https://replicate.com/cjwbw/stablesr/api) for more information.
155
+
156
+ ### Citation
157
+ If our work is useful for your research, please consider citing:
158
+
159
+ @inproceedings{wang2023exploiting,
160
+ author = {Wang, Jianyi and Yue, Zongsheng and Zhou, Shangchen and Chan, Kelvin CK and Loy, Chen Change},
161
+ title = {Exploiting Diffusion Prior for Real-World Image Super-Resolution},
162
+ booktitle = {arXiv preprint arXiv:2305.07015},
163
+ year = {2023}
164
+ }
165
+
166
+ ### License
167
+
168
+ This project is licensed under <a rel="license" href="https://github.com/IceClear/StableSR/blob/main/LICENSE.txt">NTU S-Lab License 1.0</a>. Redistribution and use should follow this license.
169
+
170
+ ### Acknowledgement
171
+
172
+ This project is based on [stablediffusion](https://github.com/Stability-AI/stablediffusion), [latent-diffusion](https://github.com/CompVis/latent-diffusion), [SPADE](https://github.com/NVlabs/SPADE), [mixture-of-diffusers](https://github.com/albarji/mixture-of-diffusers) and [BasicSR](https://github.com/XPixelGroup/BasicSR). Thanks for their awesome work.
173
+
174
+ ### Contact
175
+ If you have any questions, please feel free to reach me out at `iceclearwjy@gmail.com`.
StableSR/basicsr/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/xinntao/BasicSR
2
+ # flake8: noqa
3
+ from .archs import *
4
+ from .data import *
5
+ from .losses import *
6
+ from .metrics import *
7
+ from .models import *
8
+ from .ops import *
9
+ from .test import *
10
+ from .train import *
11
+ from .utils import *
12
+ # from .version import __gitsha__, __version__
StableSR/basicsr/archs/__init__.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from copy import deepcopy
3
+ from os import path as osp
4
+
5
+ from basicsr.utils import get_root_logger, scandir
6
+ from basicsr.utils.registry import ARCH_REGISTRY
7
+
8
+ __all__ = ['build_network']
9
+
10
+ # automatically scan and import arch modules for registry
11
+ # scan all the files under the 'archs' folder and collect files ending with '_arch.py'
12
+ arch_folder = osp.dirname(osp.abspath(__file__))
13
+ arch_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(arch_folder) if v.endswith('_arch.py')]
14
+ # import all the arch modules
15
+ _arch_modules = [importlib.import_module(f'basicsr.archs.{file_name}') for file_name in arch_filenames]
16
+
17
+
18
+ def build_network(opt):
19
+ opt = deepcopy(opt)
20
+ network_type = opt.pop('type')
21
+ net = ARCH_REGISTRY.get(network_type)(**opt)
22
+ logger = get_root_logger()
23
+ logger.info(f'Network [{net.__class__.__name__}] is created.')
24
+ return net
StableSR/basicsr/archs/arch_util.py ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections.abc
2
+ import math
3
+ import torch
4
+ import torchvision
5
+ import warnings
6
+ from distutils.version import LooseVersion
7
+ from itertools import repeat
8
+ from torch import nn as nn
9
+ from torch.nn import functional as F
10
+ from torch.nn import init as init
11
+ from torch.nn.modules.batchnorm import _BatchNorm
12
+
13
+ from basicsr.ops.dcn import ModulatedDeformConvPack, modulated_deform_conv
14
+ from basicsr.utils import get_root_logger
15
+
16
+
17
+ @torch.no_grad()
18
+ def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
19
+ """Initialize network weights.
20
+
21
+ Args:
22
+ module_list (list[nn.Module] | nn.Module): Modules to be initialized.
23
+ scale (float): Scale initialized weights, especially for residual
24
+ blocks. Default: 1.
25
+ bias_fill (float): The value to fill bias. Default: 0
26
+ kwargs (dict): Other arguments for initialization function.
27
+ """
28
+ if not isinstance(module_list, list):
29
+ module_list = [module_list]
30
+ for module in module_list:
31
+ for m in module.modules():
32
+ if isinstance(m, nn.Conv2d):
33
+ init.kaiming_normal_(m.weight, **kwargs)
34
+ m.weight.data *= scale
35
+ if m.bias is not None:
36
+ m.bias.data.fill_(bias_fill)
37
+ elif isinstance(m, nn.Linear):
38
+ init.kaiming_normal_(m.weight, **kwargs)
39
+ m.weight.data *= scale
40
+ if m.bias is not None:
41
+ m.bias.data.fill_(bias_fill)
42
+ elif isinstance(m, _BatchNorm):
43
+ init.constant_(m.weight, 1)
44
+ if m.bias is not None:
45
+ m.bias.data.fill_(bias_fill)
46
+
47
+
48
+ def make_layer(basic_block, num_basic_block, **kwarg):
49
+ """Make layers by stacking the same blocks.
50
+
51
+ Args:
52
+ basic_block (nn.module): nn.module class for basic block.
53
+ num_basic_block (int): number of blocks.
54
+
55
+ Returns:
56
+ nn.Sequential: Stacked blocks in nn.Sequential.
57
+ """
58
+ layers = []
59
+ for _ in range(num_basic_block):
60
+ layers.append(basic_block(**kwarg))
61
+ return nn.Sequential(*layers)
62
+
63
+ class PixelShufflePack(nn.Module):
64
+ """Pixel Shuffle upsample layer.
65
+ Args:
66
+ in_channels (int): Number of input channels.
67
+ out_channels (int): Number of output channels.
68
+ scale_factor (int): Upsample ratio.
69
+ upsample_kernel (int): Kernel size of Conv layer to expand channels.
70
+ Returns:
71
+ Upsampled feature map.
72
+ """
73
+
74
+ def __init__(self, in_channels, out_channels, scale_factor,
75
+ upsample_kernel):
76
+ super().__init__()
77
+ self.in_channels = in_channels
78
+ self.out_channels = out_channels
79
+ self.scale_factor = scale_factor
80
+ self.upsample_kernel = upsample_kernel
81
+ self.upsample_conv = nn.Conv2d(
82
+ self.in_channels,
83
+ self.out_channels * scale_factor * scale_factor,
84
+ self.upsample_kernel,
85
+ padding=(self.upsample_kernel - 1) // 2)
86
+ self.init_weights()
87
+
88
+ def init_weights(self):
89
+ """Initialize weights for PixelShufflePack."""
90
+ default_init_weights(self, 1)
91
+
92
+ def forward(self, x):
93
+ """Forward function for PixelShufflePack.
94
+ Args:
95
+ x (Tensor): Input tensor with shape (n, c, h, w).
96
+ Returns:
97
+ Tensor: Forward results.
98
+ """
99
+ x = self.upsample_conv(x)
100
+ x = F.pixel_shuffle(x, self.scale_factor)
101
+ return x
102
+
103
+ class ResidualBlockNoBN(nn.Module):
104
+ """Residual block without BN.
105
+
106
+ Args:
107
+ num_feat (int): Channel number of intermediate features.
108
+ Default: 64.
109
+ res_scale (float): Residual scale. Default: 1.
110
+ pytorch_init (bool): If set to True, use pytorch default init,
111
+ otherwise, use default_init_weights. Default: False.
112
+ """
113
+
114
+ def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
115
+ super(ResidualBlockNoBN, self).__init__()
116
+ self.res_scale = res_scale
117
+ self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
118
+ self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
119
+ self.relu = nn.ReLU(inplace=True)
120
+
121
+ if not pytorch_init:
122
+ default_init_weights([self.conv1, self.conv2], 0.1)
123
+
124
+ def forward(self, x):
125
+ identity = x
126
+ out = self.conv2(self.relu(self.conv1(x)))
127
+ return identity + out * self.res_scale
128
+
129
+
130
+ class Upsample(nn.Sequential):
131
+ """Upsample module.
132
+
133
+ Args:
134
+ scale (int): Scale factor. Supported scales: 2^n and 3.
135
+ num_feat (int): Channel number of intermediate features.
136
+ """
137
+
138
+ def __init__(self, scale, num_feat):
139
+ m = []
140
+ if (scale & (scale - 1)) == 0: # scale = 2^n
141
+ for _ in range(int(math.log(scale, 2))):
142
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
143
+ m.append(nn.PixelShuffle(2))
144
+ elif scale == 3:
145
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
146
+ m.append(nn.PixelShuffle(3))
147
+ else:
148
+ raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
149
+ super(Upsample, self).__init__(*m)
150
+
151
+
152
+ def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
153
+ """Warp an image or feature map with optical flow.
154
+
155
+ Args:
156
+ x (Tensor): Tensor with size (n, c, h, w).
157
+ flow (Tensor): Tensor with size (n, h, w, 2), normal value.
158
+ interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
159
+ padding_mode (str): 'zeros' or 'border' or 'reflection'.
160
+ Default: 'zeros'.
161
+ align_corners (bool): Before pytorch 1.3, the default value is
162
+ align_corners=True. After pytorch 1.3, the default value is
163
+ align_corners=False. Here, we use the True as default.
164
+
165
+ Returns:
166
+ Tensor: Warped image or feature map.
167
+ """
168
+ assert x.size()[-2:] == flow.size()[1:3]
169
+ _, _, h, w = x.size()
170
+ # create mesh grid
171
+ grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
172
+ grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
173
+ grid.requires_grad = False
174
+
175
+ vgrid = grid + flow
176
+ # scale grid to [-1,1]
177
+ vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
178
+ vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
179
+ vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
180
+ output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
181
+
182
+ # TODO, what if align_corners=False
183
+ return output
184
+
185
+
186
+ def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
187
+ """Resize a flow according to ratio or shape.
188
+
189
+ Args:
190
+ flow (Tensor): Precomputed flow. shape [N, 2, H, W].
191
+ size_type (str): 'ratio' or 'shape'.
192
+ sizes (list[int | float]): the ratio for resizing or the final output
193
+ shape.
194
+ 1) The order of ratio should be [ratio_h, ratio_w]. For
195
+ downsampling, the ratio should be smaller than 1.0 (i.e., ratio
196
+ < 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
197
+ ratio > 1.0).
198
+ 2) The order of output_size should be [out_h, out_w].
199
+ interp_mode (str): The mode of interpolation for resizing.
200
+ Default: 'bilinear'.
201
+ align_corners (bool): Whether align corners. Default: False.
202
+
203
+ Returns:
204
+ Tensor: Resized flow.
205
+ """
206
+ _, _, flow_h, flow_w = flow.size()
207
+ if size_type == 'ratio':
208
+ output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
209
+ elif size_type == 'shape':
210
+ output_h, output_w = sizes[0], sizes[1]
211
+ else:
212
+ raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
213
+
214
+ input_flow = flow.clone()
215
+ ratio_h = output_h / flow_h
216
+ ratio_w = output_w / flow_w
217
+ input_flow[:, 0, :, :] *= ratio_w
218
+ input_flow[:, 1, :, :] *= ratio_h
219
+ resized_flow = F.interpolate(
220
+ input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
221
+ return resized_flow
222
+
223
+
224
+ # TODO: may write a cpp file
225
+ def pixel_unshuffle(x, scale):
226
+ """ Pixel unshuffle.
227
+
228
+ Args:
229
+ x (Tensor): Input feature with shape (b, c, hh, hw).
230
+ scale (int): Downsample ratio.
231
+
232
+ Returns:
233
+ Tensor: the pixel unshuffled feature.
234
+ """
235
+ b, c, hh, hw = x.size()
236
+ out_channel = c * (scale**2)
237
+ assert hh % scale == 0 and hw % scale == 0
238
+ h = hh // scale
239
+ w = hw // scale
240
+ x_view = x.view(b, c, h, scale, w, scale)
241
+ return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
242
+
243
+
244
+ class DCNv2Pack(ModulatedDeformConvPack):
245
+ """Modulated deformable conv for deformable alignment.
246
+
247
+ Different from the official DCNv2Pack, which generates offsets and masks
248
+ from the preceding features, this DCNv2Pack takes another different
249
+ features to generate offsets and masks.
250
+
251
+ ``Paper: Delving Deep into Deformable Alignment in Video Super-Resolution``
252
+ """
253
+
254
+ def forward(self, x, feat):
255
+ out = self.conv_offset(feat)
256
+ o1, o2, mask = torch.chunk(out, 3, dim=1)
257
+ offset = torch.cat((o1, o2), dim=1)
258
+ mask = torch.sigmoid(mask)
259
+
260
+ offset_absmean = torch.mean(torch.abs(offset))
261
+ if offset_absmean > 50:
262
+ logger = get_root_logger()
263
+ logger.warning(f'Offset abs mean is {offset_absmean}, larger than 50.')
264
+
265
+ if LooseVersion(torchvision.__version__) >= LooseVersion('0.9.0'):
266
+ return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
267
+ self.dilation, mask)
268
+ else:
269
+ return modulated_deform_conv(x, offset, mask, self.weight, self.bias, self.stride, self.padding,
270
+ self.dilation, self.groups, self.deformable_groups)
271
+
272
+
273
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
274
+ # From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
275
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
276
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
277
+ def norm_cdf(x):
278
+ # Computes standard normal cumulative distribution function
279
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
280
+
281
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
282
+ warnings.warn(
283
+ 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
284
+ 'The distribution of values may be incorrect.',
285
+ stacklevel=2)
286
+
287
+ with torch.no_grad():
288
+ # Values are generated by using a truncated uniform distribution and
289
+ # then using the inverse CDF for the normal distribution.
290
+ # Get upper and lower cdf values
291
+ low = norm_cdf((a - mean) / std)
292
+ up = norm_cdf((b - mean) / std)
293
+
294
+ # Uniformly fill tensor with values from [low, up], then translate to
295
+ # [2l-1, 2u-1].
296
+ tensor.uniform_(2 * low - 1, 2 * up - 1)
297
+
298
+ # Use inverse cdf transform for normal distribution to get truncated
299
+ # standard normal
300
+ tensor.erfinv_()
301
+
302
+ # Transform to proper mean, std
303
+ tensor.mul_(std * math.sqrt(2.))
304
+ tensor.add_(mean)
305
+
306
+ # Clamp to ensure it's in the proper range
307
+ tensor.clamp_(min=a, max=b)
308
+ return tensor
309
+
310
+
311
+ def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
312
+ r"""Fills the input Tensor with values drawn from a truncated
313
+ normal distribution.
314
+
315
+ From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py
316
+
317
+ The values are effectively drawn from the
318
+ normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
319
+ with values outside :math:`[a, b]` redrawn until they are within
320
+ the bounds. The method used for generating the random values works
321
+ best when :math:`a \leq \text{mean} \leq b`.
322
+
323
+ Args:
324
+ tensor: an n-dimensional `torch.Tensor`
325
+ mean: the mean of the normal distribution
326
+ std: the standard deviation of the normal distribution
327
+ a: the minimum cutoff value
328
+ b: the maximum cutoff value
329
+
330
+ Examples:
331
+ >>> w = torch.empty(3, 5)
332
+ >>> nn.init.trunc_normal_(w)
333
+ """
334
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
335
+
336
+
337
+ # From PyTorch
338
+ def _ntuple(n):
339
+
340
+ def parse(x):
341
+ if isinstance(x, collections.abc.Iterable):
342
+ return x
343
+ return tuple(repeat(x, n))
344
+
345
+ return parse
346
+
347
+
348
+ to_1tuple = _ntuple(1)
349
+ to_2tuple = _ntuple(2)
350
+ to_3tuple = _ntuple(3)
351
+ to_4tuple = _ntuple(4)
352
+ to_ntuple = _ntuple
StableSR/basicsr/archs/basicvsr_arch.py ADDED
@@ -0,0 +1,336 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+ from .arch_util import ResidualBlockNoBN, flow_warp, make_layer
7
+ from .edvr_arch import PCDAlignment, TSAFusion
8
+ from .spynet_arch import SpyNet
9
+
10
+
11
+ @ARCH_REGISTRY.register()
12
+ class BasicVSR(nn.Module):
13
+ """A recurrent network for video SR. Now only x4 is supported.
14
+
15
+ Args:
16
+ num_feat (int): Number of channels. Default: 64.
17
+ num_block (int): Number of residual blocks for each branch. Default: 15
18
+ spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.
19
+ """
20
+
21
+ def __init__(self, num_feat=64, num_block=15, spynet_path=None):
22
+ super().__init__()
23
+ self.num_feat = num_feat
24
+
25
+ # alignment
26
+ self.spynet = SpyNet(spynet_path)
27
+
28
+ # propagation
29
+ self.backward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block)
30
+ self.forward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block)
31
+
32
+ # reconstruction
33
+ self.fusion = nn.Conv2d(num_feat * 2, num_feat, 1, 1, 0, bias=True)
34
+ self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1, bias=True)
35
+ self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1, bias=True)
36
+ self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
37
+ self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
38
+
39
+ self.pixel_shuffle = nn.PixelShuffle(2)
40
+
41
+ # activation functions
42
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
43
+
44
+ def get_flow(self, x):
45
+ b, n, c, h, w = x.size()
46
+
47
+ x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w)
48
+ x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w)
49
+
50
+ flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w)
51
+ flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w)
52
+
53
+ return flows_forward, flows_backward
54
+
55
+ def forward(self, x):
56
+ """Forward function of BasicVSR.
57
+
58
+ Args:
59
+ x: Input frames with shape (b, n, c, h, w). n is the temporal dimension / number of frames.
60
+ """
61
+ flows_forward, flows_backward = self.get_flow(x)
62
+ b, n, _, h, w = x.size()
63
+
64
+ # backward branch
65
+ out_l = []
66
+ feat_prop = x.new_zeros(b, self.num_feat, h, w)
67
+ for i in range(n - 1, -1, -1):
68
+ x_i = x[:, i, :, :, :]
69
+ if i < n - 1:
70
+ flow = flows_backward[:, i, :, :, :]
71
+ feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
72
+ feat_prop = torch.cat([x_i, feat_prop], dim=1)
73
+ feat_prop = self.backward_trunk(feat_prop)
74
+ out_l.insert(0, feat_prop)
75
+
76
+ # forward branch
77
+ feat_prop = torch.zeros_like(feat_prop)
78
+ for i in range(0, n):
79
+ x_i = x[:, i, :, :, :]
80
+ if i > 0:
81
+ flow = flows_forward[:, i - 1, :, :, :]
82
+ feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
83
+
84
+ feat_prop = torch.cat([x_i, feat_prop], dim=1)
85
+ feat_prop = self.forward_trunk(feat_prop)
86
+
87
+ # upsample
88
+ out = torch.cat([out_l[i], feat_prop], dim=1)
89
+ out = self.lrelu(self.fusion(out))
90
+ out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
91
+ out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
92
+ out = self.lrelu(self.conv_hr(out))
93
+ out = self.conv_last(out)
94
+ base = F.interpolate(x_i, scale_factor=4, mode='bilinear', align_corners=False)
95
+ out += base
96
+ out_l[i] = out
97
+
98
+ return torch.stack(out_l, dim=1)
99
+
100
+
101
+ class ConvResidualBlocks(nn.Module):
102
+ """Conv and residual block used in BasicVSR.
103
+
104
+ Args:
105
+ num_in_ch (int): Number of input channels. Default: 3.
106
+ num_out_ch (int): Number of output channels. Default: 64.
107
+ num_block (int): Number of residual blocks. Default: 15.
108
+ """
109
+
110
+ def __init__(self, num_in_ch=3, num_out_ch=64, num_block=15):
111
+ super().__init__()
112
+ self.main = nn.Sequential(
113
+ nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1, bias=True), nn.LeakyReLU(negative_slope=0.1, inplace=True),
114
+ make_layer(ResidualBlockNoBN, num_block, num_feat=num_out_ch))
115
+
116
+ def forward(self, fea):
117
+ return self.main(fea)
118
+
119
+
120
+ @ARCH_REGISTRY.register()
121
+ class IconVSR(nn.Module):
122
+ """IconVSR, proposed also in the BasicVSR paper.
123
+
124
+ Args:
125
+ num_feat (int): Number of channels. Default: 64.
126
+ num_block (int): Number of residual blocks for each branch. Default: 15.
127
+ keyframe_stride (int): Keyframe stride. Default: 5.
128
+ temporal_padding (int): Temporal padding. Default: 2.
129
+ spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.
130
+ edvr_path (str): Path to the pretrained EDVR model. Default: None.
131
+ """
132
+
133
+ def __init__(self,
134
+ num_feat=64,
135
+ num_block=15,
136
+ keyframe_stride=5,
137
+ temporal_padding=2,
138
+ spynet_path=None,
139
+ edvr_path=None):
140
+ super().__init__()
141
+
142
+ self.num_feat = num_feat
143
+ self.temporal_padding = temporal_padding
144
+ self.keyframe_stride = keyframe_stride
145
+
146
+ # keyframe_branch
147
+ self.edvr = EDVRFeatureExtractor(temporal_padding * 2 + 1, num_feat, edvr_path)
148
+ # alignment
149
+ self.spynet = SpyNet(spynet_path)
150
+
151
+ # propagation
152
+ self.backward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True)
153
+ self.backward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block)
154
+
155
+ self.forward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True)
156
+ self.forward_trunk = ConvResidualBlocks(2 * num_feat + 3, num_feat, num_block)
157
+
158
+ # reconstruction
159
+ self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1, bias=True)
160
+ self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1, bias=True)
161
+ self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
162
+ self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
163
+
164
+ self.pixel_shuffle = nn.PixelShuffle(2)
165
+
166
+ # activation functions
167
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
168
+
169
+ def pad_spatial(self, x):
170
+ """Apply padding spatially.
171
+
172
+ Since the PCD module in EDVR requires that the resolution is a multiple
173
+ of 4, we apply padding to the input LR images if their resolution is
174
+ not divisible by 4.
175
+
176
+ Args:
177
+ x (Tensor): Input LR sequence with shape (n, t, c, h, w).
178
+ Returns:
179
+ Tensor: Padded LR sequence with shape (n, t, c, h_pad, w_pad).
180
+ """
181
+ n, t, c, h, w = x.size()
182
+
183
+ pad_h = (4 - h % 4) % 4
184
+ pad_w = (4 - w % 4) % 4
185
+
186
+ # padding
187
+ x = x.view(-1, c, h, w)
188
+ x = F.pad(x, [0, pad_w, 0, pad_h], mode='reflect')
189
+
190
+ return x.view(n, t, c, h + pad_h, w + pad_w)
191
+
192
+ def get_flow(self, x):
193
+ b, n, c, h, w = x.size()
194
+
195
+ x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w)
196
+ x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w)
197
+
198
+ flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w)
199
+ flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w)
200
+
201
+ return flows_forward, flows_backward
202
+
203
+ def get_keyframe_feature(self, x, keyframe_idx):
204
+ if self.temporal_padding == 2:
205
+ x = [x[:, [4, 3]], x, x[:, [-4, -5]]]
206
+ elif self.temporal_padding == 3:
207
+ x = [x[:, [6, 5, 4]], x, x[:, [-5, -6, -7]]]
208
+ x = torch.cat(x, dim=1)
209
+
210
+ num_frames = 2 * self.temporal_padding + 1
211
+ feats_keyframe = {}
212
+ for i in keyframe_idx:
213
+ feats_keyframe[i] = self.edvr(x[:, i:i + num_frames].contiguous())
214
+ return feats_keyframe
215
+
216
+ def forward(self, x):
217
+ b, n, _, h_input, w_input = x.size()
218
+
219
+ x = self.pad_spatial(x)
220
+ h, w = x.shape[3:]
221
+
222
+ keyframe_idx = list(range(0, n, self.keyframe_stride))
223
+ if keyframe_idx[-1] != n - 1:
224
+ keyframe_idx.append(n - 1) # last frame is a keyframe
225
+
226
+ # compute flow and keyframe features
227
+ flows_forward, flows_backward = self.get_flow(x)
228
+ feats_keyframe = self.get_keyframe_feature(x, keyframe_idx)
229
+
230
+ # backward branch
231
+ out_l = []
232
+ feat_prop = x.new_zeros(b, self.num_feat, h, w)
233
+ for i in range(n - 1, -1, -1):
234
+ x_i = x[:, i, :, :, :]
235
+ if i < n - 1:
236
+ flow = flows_backward[:, i, :, :, :]
237
+ feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
238
+ if i in keyframe_idx:
239
+ feat_prop = torch.cat([feat_prop, feats_keyframe[i]], dim=1)
240
+ feat_prop = self.backward_fusion(feat_prop)
241
+ feat_prop = torch.cat([x_i, feat_prop], dim=1)
242
+ feat_prop = self.backward_trunk(feat_prop)
243
+ out_l.insert(0, feat_prop)
244
+
245
+ # forward branch
246
+ feat_prop = torch.zeros_like(feat_prop)
247
+ for i in range(0, n):
248
+ x_i = x[:, i, :, :, :]
249
+ if i > 0:
250
+ flow = flows_forward[:, i - 1, :, :, :]
251
+ feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1))
252
+ if i in keyframe_idx:
253
+ feat_prop = torch.cat([feat_prop, feats_keyframe[i]], dim=1)
254
+ feat_prop = self.forward_fusion(feat_prop)
255
+
256
+ feat_prop = torch.cat([x_i, out_l[i], feat_prop], dim=1)
257
+ feat_prop = self.forward_trunk(feat_prop)
258
+
259
+ # upsample
260
+ out = self.lrelu(self.pixel_shuffle(self.upconv1(feat_prop)))
261
+ out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
262
+ out = self.lrelu(self.conv_hr(out))
263
+ out = self.conv_last(out)
264
+ base = F.interpolate(x_i, scale_factor=4, mode='bilinear', align_corners=False)
265
+ out += base
266
+ out_l[i] = out
267
+
268
+ return torch.stack(out_l, dim=1)[..., :4 * h_input, :4 * w_input]
269
+
270
+
271
+ class EDVRFeatureExtractor(nn.Module):
272
+ """EDVR feature extractor used in IconVSR.
273
+
274
+ Args:
275
+ num_input_frame (int): Number of input frames.
276
+ num_feat (int): Number of feature channels
277
+ load_path (str): Path to the pretrained weights of EDVR. Default: None.
278
+ """
279
+
280
+ def __init__(self, num_input_frame, num_feat, load_path):
281
+
282
+ super(EDVRFeatureExtractor, self).__init__()
283
+
284
+ self.center_frame_idx = num_input_frame // 2
285
+
286
+ # extract pyramid features
287
+ self.conv_first = nn.Conv2d(3, num_feat, 3, 1, 1)
288
+ self.feature_extraction = make_layer(ResidualBlockNoBN, 5, num_feat=num_feat)
289
+ self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
290
+ self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
291
+ self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
292
+ self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
293
+
294
+ # pcd and tsa module
295
+ self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=8)
296
+ self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_input_frame, center_frame_idx=self.center_frame_idx)
297
+
298
+ # activation function
299
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
300
+
301
+ if load_path:
302
+ self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])
303
+
304
+ def forward(self, x):
305
+ b, n, c, h, w = x.size()
306
+
307
+ # extract features for each frame
308
+ # L1
309
+ feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w)))
310
+ feat_l1 = self.feature_extraction(feat_l1)
311
+ # L2
312
+ feat_l2 = self.lrelu(self.conv_l2_1(feat_l1))
313
+ feat_l2 = self.lrelu(self.conv_l2_2(feat_l2))
314
+ # L3
315
+ feat_l3 = self.lrelu(self.conv_l3_1(feat_l2))
316
+ feat_l3 = self.lrelu(self.conv_l3_2(feat_l3))
317
+
318
+ feat_l1 = feat_l1.view(b, n, -1, h, w)
319
+ feat_l2 = feat_l2.view(b, n, -1, h // 2, w // 2)
320
+ feat_l3 = feat_l3.view(b, n, -1, h // 4, w // 4)
321
+
322
+ # PCD alignment
323
+ ref_feat_l = [ # reference feature list
324
+ feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(),
325
+ feat_l3[:, self.center_frame_idx, :, :, :].clone()
326
+ ]
327
+ aligned_feat = []
328
+ for i in range(n):
329
+ nbr_feat_l = [ # neighboring feature list
330
+ feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone()
331
+ ]
332
+ aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l))
333
+ aligned_feat = torch.stack(aligned_feat, dim=1) # (b, t, c, h, w)
334
+
335
+ # TSA fusion
336
+ return self.fusion(aligned_feat)
StableSR/basicsr/archs/basicvsrpp_arch.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torchvision
5
+ import warnings
6
+
7
+ from basicsr.archs.arch_util import flow_warp
8
+ from basicsr.archs.basicvsr_arch import ConvResidualBlocks
9
+ from basicsr.archs.spynet_arch import SpyNet
10
+ from basicsr.ops.dcn import ModulatedDeformConvPack
11
+ from basicsr.utils.registry import ARCH_REGISTRY
12
+
13
+
14
+ @ARCH_REGISTRY.register()
15
+ class BasicVSRPlusPlus(nn.Module):
16
+ """BasicVSR++ network structure.
17
+
18
+ Support either x4 upsampling or same size output. Since DCN is used in this
19
+ model, it can only be used with CUDA enabled. If CUDA is not enabled,
20
+ feature alignment will be skipped. Besides, we adopt the official DCN
21
+ implementation and the version of torch need to be higher than 1.9.
22
+
23
+ ``Paper: BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment``
24
+
25
+ Args:
26
+ mid_channels (int, optional): Channel number of the intermediate
27
+ features. Default: 64.
28
+ num_blocks (int, optional): The number of residual blocks in each
29
+ propagation branch. Default: 7.
30
+ max_residue_magnitude (int): The maximum magnitude of the offset
31
+ residue (Eq. 6 in paper). Default: 10.
32
+ is_low_res_input (bool, optional): Whether the input is low-resolution
33
+ or not. If False, the output resolution is equal to the input
34
+ resolution. Default: True.
35
+ spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.
36
+ cpu_cache_length (int, optional): When the length of sequence is larger
37
+ than this value, the intermediate features are sent to CPU. This
38
+ saves GPU memory, but slows down the inference speed. You can
39
+ increase this number if you have a GPU with large memory.
40
+ Default: 100.
41
+ """
42
+
43
+ def __init__(self,
44
+ mid_channels=64,
45
+ num_blocks=7,
46
+ max_residue_magnitude=10,
47
+ is_low_res_input=True,
48
+ spynet_path=None,
49
+ cpu_cache_length=100):
50
+
51
+ super().__init__()
52
+ self.mid_channels = mid_channels
53
+ self.is_low_res_input = is_low_res_input
54
+ self.cpu_cache_length = cpu_cache_length
55
+
56
+ # optical flow
57
+ self.spynet = SpyNet(spynet_path)
58
+
59
+ # feature extraction module
60
+ if is_low_res_input:
61
+ self.feat_extract = ConvResidualBlocks(3, mid_channels, 5)
62
+ else:
63
+ self.feat_extract = nn.Sequential(
64
+ nn.Conv2d(3, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True),
65
+ nn.Conv2d(mid_channels, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True),
66
+ ConvResidualBlocks(mid_channels, mid_channels, 5))
67
+
68
+ # propagation branches
69
+ self.deform_align = nn.ModuleDict()
70
+ self.backbone = nn.ModuleDict()
71
+ modules = ['backward_1', 'forward_1', 'backward_2', 'forward_2']
72
+ for i, module in enumerate(modules):
73
+ if torch.cuda.is_available():
74
+ self.deform_align[module] = SecondOrderDeformableAlignment(
75
+ 2 * mid_channels,
76
+ mid_channels,
77
+ 3,
78
+ padding=1,
79
+ deformable_groups=16,
80
+ max_residue_magnitude=max_residue_magnitude)
81
+ self.backbone[module] = ConvResidualBlocks((2 + i) * mid_channels, mid_channels, num_blocks)
82
+
83
+ # upsampling module
84
+ self.reconstruction = ConvResidualBlocks(5 * mid_channels, mid_channels, 5)
85
+
86
+ self.upconv1 = nn.Conv2d(mid_channels, mid_channels * 4, 3, 1, 1, bias=True)
87
+ self.upconv2 = nn.Conv2d(mid_channels, 64 * 4, 3, 1, 1, bias=True)
88
+
89
+ self.pixel_shuffle = nn.PixelShuffle(2)
90
+
91
+ self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
92
+ self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
93
+ self.img_upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False)
94
+
95
+ # activation function
96
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
97
+
98
+ # check if the sequence is augmented by flipping
99
+ self.is_mirror_extended = False
100
+
101
+ if len(self.deform_align) > 0:
102
+ self.is_with_alignment = True
103
+ else:
104
+ self.is_with_alignment = False
105
+ warnings.warn('Deformable alignment module is not added. '
106
+ 'Probably your CUDA is not configured correctly. DCN can only '
107
+ 'be used with CUDA enabled. Alignment is skipped now.')
108
+
109
+ def check_if_mirror_extended(self, lqs):
110
+ """Check whether the input is a mirror-extended sequence.
111
+
112
+ If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the (t-1-i)-th frame.
113
+
114
+ Args:
115
+ lqs (tensor): Input low quality (LQ) sequence with shape (n, t, c, h, w).
116
+ """
117
+
118
+ if lqs.size(1) % 2 == 0:
119
+ lqs_1, lqs_2 = torch.chunk(lqs, 2, dim=1)
120
+ if torch.norm(lqs_1 - lqs_2.flip(1)) == 0:
121
+ self.is_mirror_extended = True
122
+
123
+ def compute_flow(self, lqs):
124
+ """Compute optical flow using SPyNet for feature alignment.
125
+
126
+ Note that if the input is an mirror-extended sequence, 'flows_forward'
127
+ is not needed, since it is equal to 'flows_backward.flip(1)'.
128
+
129
+ Args:
130
+ lqs (tensor): Input low quality (LQ) sequence with
131
+ shape (n, t, c, h, w).
132
+
133
+ Return:
134
+ tuple(Tensor): Optical flow. 'flows_forward' corresponds to the flows used for forward-time propagation \
135
+ (current to previous). 'flows_backward' corresponds to the flows used for backward-time \
136
+ propagation (current to next).
137
+ """
138
+
139
+ n, t, c, h, w = lqs.size()
140
+ lqs_1 = lqs[:, :-1, :, :, :].reshape(-1, c, h, w)
141
+ lqs_2 = lqs[:, 1:, :, :, :].reshape(-1, c, h, w)
142
+
143
+ flows_backward = self.spynet(lqs_1, lqs_2).view(n, t - 1, 2, h, w)
144
+
145
+ if self.is_mirror_extended: # flows_forward = flows_backward.flip(1)
146
+ flows_forward = flows_backward.flip(1)
147
+ else:
148
+ flows_forward = self.spynet(lqs_2, lqs_1).view(n, t - 1, 2, h, w)
149
+
150
+ if self.cpu_cache:
151
+ flows_backward = flows_backward.cpu()
152
+ flows_forward = flows_forward.cpu()
153
+
154
+ return flows_forward, flows_backward
155
+
156
+ def propagate(self, feats, flows, module_name):
157
+ """Propagate the latent features throughout the sequence.
158
+
159
+ Args:
160
+ feats dict(list[tensor]): Features from previous branches. Each
161
+ component is a list of tensors with shape (n, c, h, w).
162
+ flows (tensor): Optical flows with shape (n, t - 1, 2, h, w).
163
+ module_name (str): The name of the propgation branches. Can either
164
+ be 'backward_1', 'forward_1', 'backward_2', 'forward_2'.
165
+
166
+ Return:
167
+ dict(list[tensor]): A dictionary containing all the propagated \
168
+ features. Each key in the dictionary corresponds to a \
169
+ propagation branch, which is represented by a list of tensors.
170
+ """
171
+
172
+ n, t, _, h, w = flows.size()
173
+
174
+ frame_idx = range(0, t + 1)
175
+ flow_idx = range(-1, t)
176
+ mapping_idx = list(range(0, len(feats['spatial'])))
177
+ mapping_idx += mapping_idx[::-1]
178
+
179
+ if 'backward' in module_name:
180
+ frame_idx = frame_idx[::-1]
181
+ flow_idx = frame_idx
182
+
183
+ feat_prop = flows.new_zeros(n, self.mid_channels, h, w)
184
+ for i, idx in enumerate(frame_idx):
185
+ feat_current = feats['spatial'][mapping_idx[idx]]
186
+ if self.cpu_cache:
187
+ feat_current = feat_current.cuda()
188
+ feat_prop = feat_prop.cuda()
189
+ # second-order deformable alignment
190
+ if i > 0 and self.is_with_alignment:
191
+ flow_n1 = flows[:, flow_idx[i], :, :, :]
192
+ if self.cpu_cache:
193
+ flow_n1 = flow_n1.cuda()
194
+
195
+ cond_n1 = flow_warp(feat_prop, flow_n1.permute(0, 2, 3, 1))
196
+
197
+ # initialize second-order features
198
+ feat_n2 = torch.zeros_like(feat_prop)
199
+ flow_n2 = torch.zeros_like(flow_n1)
200
+ cond_n2 = torch.zeros_like(cond_n1)
201
+
202
+ if i > 1: # second-order features
203
+ feat_n2 = feats[module_name][-2]
204
+ if self.cpu_cache:
205
+ feat_n2 = feat_n2.cuda()
206
+
207
+ flow_n2 = flows[:, flow_idx[i - 1], :, :, :]
208
+ if self.cpu_cache:
209
+ flow_n2 = flow_n2.cuda()
210
+
211
+ flow_n2 = flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1))
212
+ cond_n2 = flow_warp(feat_n2, flow_n2.permute(0, 2, 3, 1))
213
+
214
+ # flow-guided deformable convolution
215
+ cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1)
216
+ feat_prop = torch.cat([feat_prop, feat_n2], dim=1)
217
+ feat_prop = self.deform_align[module_name](feat_prop, cond, flow_n1, flow_n2)
218
+
219
+ # concatenate and residual blocks
220
+ feat = [feat_current] + [feats[k][idx] for k in feats if k not in ['spatial', module_name]] + [feat_prop]
221
+ if self.cpu_cache:
222
+ feat = [f.cuda() for f in feat]
223
+
224
+ feat = torch.cat(feat, dim=1)
225
+ feat_prop = feat_prop + self.backbone[module_name](feat)
226
+ feats[module_name].append(feat_prop)
227
+
228
+ if self.cpu_cache:
229
+ feats[module_name][-1] = feats[module_name][-1].cpu()
230
+ torch.cuda.empty_cache()
231
+
232
+ if 'backward' in module_name:
233
+ feats[module_name] = feats[module_name][::-1]
234
+
235
+ return feats
236
+
237
+ def upsample(self, lqs, feats):
238
+ """Compute the output image given the features.
239
+
240
+ Args:
241
+ lqs (tensor): Input low quality (LQ) sequence with
242
+ shape (n, t, c, h, w).
243
+ feats (dict): The features from the propagation branches.
244
+
245
+ Returns:
246
+ Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
247
+ """
248
+
249
+ outputs = []
250
+ num_outputs = len(feats['spatial'])
251
+
252
+ mapping_idx = list(range(0, num_outputs))
253
+ mapping_idx += mapping_idx[::-1]
254
+
255
+ for i in range(0, lqs.size(1)):
256
+ hr = [feats[k].pop(0) for k in feats if k != 'spatial']
257
+ hr.insert(0, feats['spatial'][mapping_idx[i]])
258
+ hr = torch.cat(hr, dim=1)
259
+ if self.cpu_cache:
260
+ hr = hr.cuda()
261
+
262
+ hr = self.reconstruction(hr)
263
+ hr = self.lrelu(self.pixel_shuffle(self.upconv1(hr)))
264
+ hr = self.lrelu(self.pixel_shuffle(self.upconv2(hr)))
265
+ hr = self.lrelu(self.conv_hr(hr))
266
+ hr = self.conv_last(hr)
267
+ if self.is_low_res_input:
268
+ hr += self.img_upsample(lqs[:, i, :, :, :])
269
+ else:
270
+ hr += lqs[:, i, :, :, :]
271
+
272
+ if self.cpu_cache:
273
+ hr = hr.cpu()
274
+ torch.cuda.empty_cache()
275
+
276
+ outputs.append(hr)
277
+
278
+ return torch.stack(outputs, dim=1)
279
+
280
+ def forward(self, lqs):
281
+ """Forward function for BasicVSR++.
282
+
283
+ Args:
284
+ lqs (tensor): Input low quality (LQ) sequence with
285
+ shape (n, t, c, h, w).
286
+
287
+ Returns:
288
+ Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).
289
+ """
290
+
291
+ n, t, c, h, w = lqs.size()
292
+
293
+ # whether to cache the features in CPU
294
+ self.cpu_cache = True if t > self.cpu_cache_length else False
295
+
296
+ if self.is_low_res_input:
297
+ lqs_downsample = lqs.clone()
298
+ else:
299
+ lqs_downsample = F.interpolate(
300
+ lqs.view(-1, c, h, w), scale_factor=0.25, mode='bicubic').view(n, t, c, h // 4, w // 4)
301
+
302
+ # check whether the input is an extended sequence
303
+ self.check_if_mirror_extended(lqs)
304
+
305
+ feats = {}
306
+ # compute spatial features
307
+ if self.cpu_cache:
308
+ feats['spatial'] = []
309
+ for i in range(0, t):
310
+ feat = self.feat_extract(lqs[:, i, :, :, :]).cpu()
311
+ feats['spatial'].append(feat)
312
+ torch.cuda.empty_cache()
313
+ else:
314
+ feats_ = self.feat_extract(lqs.view(-1, c, h, w))
315
+ h, w = feats_.shape[2:]
316
+ feats_ = feats_.view(n, t, -1, h, w)
317
+ feats['spatial'] = [feats_[:, i, :, :, :] for i in range(0, t)]
318
+
319
+ # compute optical flow using the low-res inputs
320
+ assert lqs_downsample.size(3) >= 64 and lqs_downsample.size(4) >= 64, (
321
+ 'The height and width of low-res inputs must be at least 64, '
322
+ f'but got {h} and {w}.')
323
+ flows_forward, flows_backward = self.compute_flow(lqs_downsample)
324
+
325
+ # feature propgation
326
+ for iter_ in [1, 2]:
327
+ for direction in ['backward', 'forward']:
328
+ module = f'{direction}_{iter_}'
329
+
330
+ feats[module] = []
331
+
332
+ if direction == 'backward':
333
+ flows = flows_backward
334
+ elif flows_forward is not None:
335
+ flows = flows_forward
336
+ else:
337
+ flows = flows_backward.flip(1)
338
+
339
+ feats = self.propagate(feats, flows, module)
340
+ if self.cpu_cache:
341
+ del flows
342
+ torch.cuda.empty_cache()
343
+
344
+ return self.upsample(lqs, feats)
345
+
346
+
347
+ class SecondOrderDeformableAlignment(ModulatedDeformConvPack):
348
+ """Second-order deformable alignment module.
349
+
350
+ Args:
351
+ in_channels (int): Same as nn.Conv2d.
352
+ out_channels (int): Same as nn.Conv2d.
353
+ kernel_size (int or tuple[int]): Same as nn.Conv2d.
354
+ stride (int or tuple[int]): Same as nn.Conv2d.
355
+ padding (int or tuple[int]): Same as nn.Conv2d.
356
+ dilation (int or tuple[int]): Same as nn.Conv2d.
357
+ groups (int): Same as nn.Conv2d.
358
+ bias (bool or str): If specified as `auto`, it will be decided by the
359
+ norm_cfg. Bias will be set as True if norm_cfg is None, otherwise
360
+ False.
361
+ max_residue_magnitude (int): The maximum magnitude of the offset
362
+ residue (Eq. 6 in paper). Default: 10.
363
+ """
364
+
365
+ def __init__(self, *args, **kwargs):
366
+ self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10)
367
+
368
+ super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs)
369
+
370
+ self.conv_offset = nn.Sequential(
371
+ nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1),
372
+ nn.LeakyReLU(negative_slope=0.1, inplace=True),
373
+ nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
374
+ nn.LeakyReLU(negative_slope=0.1, inplace=True),
375
+ nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
376
+ nn.LeakyReLU(negative_slope=0.1, inplace=True),
377
+ nn.Conv2d(self.out_channels, 27 * self.deformable_groups, 3, 1, 1),
378
+ )
379
+
380
+ self.init_offset()
381
+
382
+ def init_offset(self):
383
+
384
+ def _constant_init(module, val, bias=0):
385
+ if hasattr(module, 'weight') and module.weight is not None:
386
+ nn.init.constant_(module.weight, val)
387
+ if hasattr(module, 'bias') and module.bias is not None:
388
+ nn.init.constant_(module.bias, bias)
389
+
390
+ _constant_init(self.conv_offset[-1], val=0, bias=0)
391
+
392
+ def forward(self, x, extra_feat, flow_1, flow_2):
393
+ extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1)
394
+ out = self.conv_offset(extra_feat)
395
+ o1, o2, mask = torch.chunk(out, 3, dim=1)
396
+
397
+ # offset
398
+ offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1))
399
+ offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
400
+ offset_1 = offset_1 + flow_1.flip(1).repeat(1, offset_1.size(1) // 2, 1, 1)
401
+ offset_2 = offset_2 + flow_2.flip(1).repeat(1, offset_2.size(1) // 2, 1, 1)
402
+ offset = torch.cat([offset_1, offset_2], dim=1)
403
+
404
+ # mask
405
+ mask = torch.sigmoid(mask)
406
+
407
+ return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
408
+ self.dilation, mask)
409
+
410
+
411
+ # if __name__ == '__main__':
412
+ # spynet_path = 'experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth'
413
+ # model = BasicVSRPlusPlus(spynet_path=spynet_path).cuda()
414
+ # input = torch.rand(1, 2, 3, 64, 64).cuda()
415
+ # output = model(input)
416
+ # print('===================')
417
+ # print(output.shape)
StableSR/basicsr/archs/degradat_arch.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn as nn
2
+
3
+ from basicsr.archs.arch_util import ResidualBlockNoBN, default_init_weights
4
+ from basicsr.utils.registry import ARCH_REGISTRY
5
+
6
+ @ARCH_REGISTRY.register()
7
+ class DEResNet(nn.Module):
8
+ """Degradation Estimator with ResNetNoBN arch. v2.1, no vector anymore
9
+ As shown in paper 'Towards Flexible Blind JPEG Artifacts Removal',
10
+ resnet arch works for image quality estimation.
11
+ Args:
12
+ num_in_ch (int): channel number of inputs. Default: 3.
13
+ num_degradation (int): num of degradation the DE should estimate. Default: 2(blur+noise).
14
+ degradation_embed_size (int): embedding size of each degradation vector.
15
+ degradation_degree_actv (int): activation function for degradation degree scalar. Default: sigmoid.
16
+ num_feats (list): channel number of each stage.
17
+ num_blocks (list): residual block of each stage.
18
+ downscales (list): downscales of each stage.
19
+ """
20
+
21
+ def __init__(self,
22
+ num_in_ch=3,
23
+ num_degradation=2,
24
+ degradation_degree_actv='sigmoid',
25
+ num_feats=(64, 128, 256, 512),
26
+ num_blocks=(2, 2, 2, 2),
27
+ downscales=(2, 2, 2, 1)):
28
+ super(DEResNet, self).__init__()
29
+
30
+ assert isinstance(num_feats, list)
31
+ assert isinstance(num_blocks, list)
32
+ assert isinstance(downscales, list)
33
+ assert len(num_feats) == len(num_blocks) and len(num_feats) == len(downscales)
34
+
35
+ num_stage = len(num_feats)
36
+
37
+ self.conv_first = nn.ModuleList()
38
+ for _ in range(num_degradation):
39
+ self.conv_first.append(nn.Conv2d(num_in_ch, num_feats[0], 3, 1, 1))
40
+ self.body = nn.ModuleList()
41
+ for _ in range(num_degradation):
42
+ body = list()
43
+ for stage in range(num_stage):
44
+ for _ in range(num_blocks[stage]):
45
+ body.append(ResidualBlockNoBN(num_feats[stage]))
46
+ if downscales[stage] == 1:
47
+ if stage < num_stage - 1 and num_feats[stage] != num_feats[stage + 1]:
48
+ body.append(nn.Conv2d(num_feats[stage], num_feats[stage + 1], 3, 1, 1))
49
+ continue
50
+ elif downscales[stage] == 2:
51
+ body.append(nn.Conv2d(num_feats[stage], num_feats[min(stage + 1, num_stage - 1)], 3, 2, 1))
52
+ else:
53
+ raise NotImplementedError
54
+ self.body.append(nn.Sequential(*body))
55
+
56
+ # self.body = nn.Sequential(*body)
57
+
58
+ self.num_degradation = num_degradation
59
+ self.fc_degree = nn.ModuleList()
60
+ if degradation_degree_actv == 'sigmoid':
61
+ actv = nn.Sigmoid
62
+ elif degradation_degree_actv == 'tanh':
63
+ actv = nn.Tanh
64
+ else:
65
+ raise NotImplementedError(f'only sigmoid and tanh are supported for degradation_degree_actv, '
66
+ f'{degradation_degree_actv} is not supported yet.')
67
+ for _ in range(num_degradation):
68
+ self.fc_degree.append(
69
+ nn.Sequential(
70
+ nn.Linear(num_feats[-1], 512),
71
+ nn.ReLU(inplace=True),
72
+ nn.Linear(512, 1),
73
+ actv(),
74
+ ))
75
+
76
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
77
+
78
+ default_init_weights([self.conv_first, self.body, self.fc_degree], 0.1)
79
+
80
+ def forward(self, x):
81
+ degrees = []
82
+ for i in range(self.num_degradation):
83
+ x_out = self.conv_first[i](x)
84
+ feat = self.body[i](x_out)
85
+ feat = self.avg_pool(feat)
86
+ feat = feat.squeeze(-1).squeeze(-1)
87
+ # for i in range(self.num_degradation):
88
+ degrees.append(self.fc_degree[i](feat).squeeze(-1))
89
+
90
+ return degrees
StableSR/basicsr/archs/dfdnet_arch.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torch.nn.utils.spectral_norm import spectral_norm
6
+
7
+ from basicsr.utils.registry import ARCH_REGISTRY
8
+ from .dfdnet_util import AttentionBlock, Blur, MSDilationBlock, UpResBlock, adaptive_instance_normalization
9
+ from .vgg_arch import VGGFeatureExtractor
10
+
11
+
12
+ class SFTUpBlock(nn.Module):
13
+ """Spatial feature transform (SFT) with upsampling block.
14
+
15
+ Args:
16
+ in_channel (int): Number of input channels.
17
+ out_channel (int): Number of output channels.
18
+ kernel_size (int): Kernel size in convolutions. Default: 3.
19
+ padding (int): Padding in convolutions. Default: 1.
20
+ """
21
+
22
+ def __init__(self, in_channel, out_channel, kernel_size=3, padding=1):
23
+ super(SFTUpBlock, self).__init__()
24
+ self.conv1 = nn.Sequential(
25
+ Blur(in_channel),
26
+ spectral_norm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
27
+ nn.LeakyReLU(0.04, True),
28
+ # The official codes use two LeakyReLU here, so 0.04 for equivalent
29
+ )
30
+ self.convup = nn.Sequential(
31
+ nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
32
+ spectral_norm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
33
+ nn.LeakyReLU(0.2, True),
34
+ )
35
+
36
+ # for SFT scale and shift
37
+ self.scale_block = nn.Sequential(
38
+ spectral_norm(nn.Conv2d(in_channel, out_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
39
+ spectral_norm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)))
40
+ self.shift_block = nn.Sequential(
41
+ spectral_norm(nn.Conv2d(in_channel, out_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
42
+ spectral_norm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)), nn.Sigmoid())
43
+ # The official codes use sigmoid for shift block, do not know why
44
+
45
+ def forward(self, x, updated_feat):
46
+ out = self.conv1(x)
47
+ # SFT
48
+ scale = self.scale_block(updated_feat)
49
+ shift = self.shift_block(updated_feat)
50
+ out = out * scale + shift
51
+ # upsample
52
+ out = self.convup(out)
53
+ return out
54
+
55
+
56
+ @ARCH_REGISTRY.register()
57
+ class DFDNet(nn.Module):
58
+ """DFDNet: Deep Face Dictionary Network.
59
+
60
+ It only processes faces with 512x512 size.
61
+
62
+ Args:
63
+ num_feat (int): Number of feature channels.
64
+ dict_path (str): Path to the facial component dictionary.
65
+ """
66
+
67
+ def __init__(self, num_feat, dict_path):
68
+ super().__init__()
69
+ self.parts = ['left_eye', 'right_eye', 'nose', 'mouth']
70
+ # part_sizes: [80, 80, 50, 110]
71
+ channel_sizes = [128, 256, 512, 512]
72
+ self.feature_sizes = np.array([256, 128, 64, 32])
73
+ self.vgg_layers = ['relu2_2', 'relu3_4', 'relu4_4', 'conv5_4']
74
+ self.flag_dict_device = False
75
+
76
+ # dict
77
+ self.dict = torch.load(dict_path)
78
+
79
+ # vgg face extractor
80
+ self.vgg_extractor = VGGFeatureExtractor(
81
+ layer_name_list=self.vgg_layers,
82
+ vgg_type='vgg19',
83
+ use_input_norm=True,
84
+ range_norm=True,
85
+ requires_grad=False)
86
+
87
+ # attention block for fusing dictionary features and input features
88
+ self.attn_blocks = nn.ModuleDict()
89
+ for idx, feat_size in enumerate(self.feature_sizes):
90
+ for name in self.parts:
91
+ self.attn_blocks[f'{name}_{feat_size}'] = AttentionBlock(channel_sizes[idx])
92
+
93
+ # multi scale dilation block
94
+ self.multi_scale_dilation = MSDilationBlock(num_feat * 8, dilation=[4, 3, 2, 1])
95
+
96
+ # upsampling and reconstruction
97
+ self.upsample0 = SFTUpBlock(num_feat * 8, num_feat * 8)
98
+ self.upsample1 = SFTUpBlock(num_feat * 8, num_feat * 4)
99
+ self.upsample2 = SFTUpBlock(num_feat * 4, num_feat * 2)
100
+ self.upsample3 = SFTUpBlock(num_feat * 2, num_feat)
101
+ self.upsample4 = nn.Sequential(
102
+ spectral_norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1)), nn.LeakyReLU(0.2, True), UpResBlock(num_feat),
103
+ UpResBlock(num_feat), nn.Conv2d(num_feat, 3, kernel_size=3, stride=1, padding=1), nn.Tanh())
104
+
105
+ def swap_feat(self, vgg_feat, updated_feat, dict_feat, location, part_name, f_size):
106
+ """swap the features from the dictionary."""
107
+ # get the original vgg features
108
+ part_feat = vgg_feat[:, :, location[1]:location[3], location[0]:location[2]].clone()
109
+ # resize original vgg features
110
+ part_resize_feat = F.interpolate(part_feat, dict_feat.size()[2:4], mode='bilinear', align_corners=False)
111
+ # use adaptive instance normalization to adjust color and illuminations
112
+ dict_feat = adaptive_instance_normalization(dict_feat, part_resize_feat)
113
+ # get similarity scores
114
+ similarity_score = F.conv2d(part_resize_feat, dict_feat)
115
+ similarity_score = F.softmax(similarity_score.view(-1), dim=0)
116
+ # select the most similar features in the dict (after norm)
117
+ select_idx = torch.argmax(similarity_score)
118
+ swap_feat = F.interpolate(dict_feat[select_idx:select_idx + 1], part_feat.size()[2:4])
119
+ # attention
120
+ attn = self.attn_blocks[f'{part_name}_' + str(f_size)](swap_feat - part_feat)
121
+ attn_feat = attn * swap_feat
122
+ # update features
123
+ updated_feat[:, :, location[1]:location[3], location[0]:location[2]] = attn_feat + part_feat
124
+ return updated_feat
125
+
126
+ def put_dict_to_device(self, x):
127
+ if self.flag_dict_device is False:
128
+ for k, v in self.dict.items():
129
+ for kk, vv in v.items():
130
+ self.dict[k][kk] = vv.to(x)
131
+ self.flag_dict_device = True
132
+
133
+ def forward(self, x, part_locations):
134
+ """
135
+ Now only support testing with batch size = 0.
136
+
137
+ Args:
138
+ x (Tensor): Input faces with shape (b, c, 512, 512).
139
+ part_locations (list[Tensor]): Part locations.
140
+ """
141
+ self.put_dict_to_device(x)
142
+ # extract vggface features
143
+ vgg_features = self.vgg_extractor(x)
144
+ # update vggface features using the dictionary for each part
145
+ updated_vgg_features = []
146
+ batch = 0 # only supports testing with batch size = 0
147
+ for vgg_layer, f_size in zip(self.vgg_layers, self.feature_sizes):
148
+ dict_features = self.dict[f'{f_size}']
149
+ vgg_feat = vgg_features[vgg_layer]
150
+ updated_feat = vgg_feat.clone()
151
+
152
+ # swap features from dictionary
153
+ for part_idx, part_name in enumerate(self.parts):
154
+ location = (part_locations[part_idx][batch] // (512 / f_size)).int()
155
+ updated_feat = self.swap_feat(vgg_feat, updated_feat, dict_features[part_name], location, part_name,
156
+ f_size)
157
+
158
+ updated_vgg_features.append(updated_feat)
159
+
160
+ vgg_feat_dilation = self.multi_scale_dilation(vgg_features['conv5_4'])
161
+ # use updated vgg features to modulate the upsampled features with
162
+ # SFT (Spatial Feature Transform) scaling and shifting manner.
163
+ upsampled_feat = self.upsample0(vgg_feat_dilation, updated_vgg_features[3])
164
+ upsampled_feat = self.upsample1(upsampled_feat, updated_vgg_features[2])
165
+ upsampled_feat = self.upsample2(upsampled_feat, updated_vgg_features[1])
166
+ upsampled_feat = self.upsample3(upsampled_feat, updated_vgg_features[0])
167
+ out = self.upsample4(upsampled_feat)
168
+
169
+ return out
StableSR/basicsr/archs/dfdnet_util.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from torch.autograd import Function
5
+ from torch.nn.utils.spectral_norm import spectral_norm
6
+
7
+
8
+ class BlurFunctionBackward(Function):
9
+
10
+ @staticmethod
11
+ def forward(ctx, grad_output, kernel, kernel_flip):
12
+ ctx.save_for_backward(kernel, kernel_flip)
13
+ grad_input = F.conv2d(grad_output, kernel_flip, padding=1, groups=grad_output.shape[1])
14
+ return grad_input
15
+
16
+ @staticmethod
17
+ def backward(ctx, gradgrad_output):
18
+ kernel, _ = ctx.saved_tensors
19
+ grad_input = F.conv2d(gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1])
20
+ return grad_input, None, None
21
+
22
+
23
+ class BlurFunction(Function):
24
+
25
+ @staticmethod
26
+ def forward(ctx, x, kernel, kernel_flip):
27
+ ctx.save_for_backward(kernel, kernel_flip)
28
+ output = F.conv2d(x, kernel, padding=1, groups=x.shape[1])
29
+ return output
30
+
31
+ @staticmethod
32
+ def backward(ctx, grad_output):
33
+ kernel, kernel_flip = ctx.saved_tensors
34
+ grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip)
35
+ return grad_input, None, None
36
+
37
+
38
+ blur = BlurFunction.apply
39
+
40
+
41
+ class Blur(nn.Module):
42
+
43
+ def __init__(self, channel):
44
+ super().__init__()
45
+ kernel = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32)
46
+ kernel = kernel.view(1, 1, 3, 3)
47
+ kernel = kernel / kernel.sum()
48
+ kernel_flip = torch.flip(kernel, [2, 3])
49
+
50
+ self.kernel = kernel.repeat(channel, 1, 1, 1)
51
+ self.kernel_flip = kernel_flip.repeat(channel, 1, 1, 1)
52
+
53
+ def forward(self, x):
54
+ return blur(x, self.kernel.type_as(x), self.kernel_flip.type_as(x))
55
+
56
+
57
+ def calc_mean_std(feat, eps=1e-5):
58
+ """Calculate mean and std for adaptive_instance_normalization.
59
+
60
+ Args:
61
+ feat (Tensor): 4D tensor.
62
+ eps (float): A small value added to the variance to avoid
63
+ divide-by-zero. Default: 1e-5.
64
+ """
65
+ size = feat.size()
66
+ assert len(size) == 4, 'The input feature should be 4D tensor.'
67
+ n, c = size[:2]
68
+ feat_var = feat.view(n, c, -1).var(dim=2) + eps
69
+ feat_std = feat_var.sqrt().view(n, c, 1, 1)
70
+ feat_mean = feat.view(n, c, -1).mean(dim=2).view(n, c, 1, 1)
71
+ return feat_mean, feat_std
72
+
73
+
74
+ def adaptive_instance_normalization(content_feat, style_feat):
75
+ """Adaptive instance normalization.
76
+
77
+ Adjust the reference features to have the similar color and illuminations
78
+ as those in the degradate features.
79
+
80
+ Args:
81
+ content_feat (Tensor): The reference feature.
82
+ style_feat (Tensor): The degradate features.
83
+ """
84
+ size = content_feat.size()
85
+ style_mean, style_std = calc_mean_std(style_feat)
86
+ content_mean, content_std = calc_mean_std(content_feat)
87
+ normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
88
+ return normalized_feat * style_std.expand(size) + style_mean.expand(size)
89
+
90
+
91
+ def AttentionBlock(in_channel):
92
+ return nn.Sequential(
93
+ spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True),
94
+ spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)))
95
+
96
+
97
+ def conv_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, bias=True):
98
+ """Conv block used in MSDilationBlock."""
99
+
100
+ return nn.Sequential(
101
+ spectral_norm(
102
+ nn.Conv2d(
103
+ in_channels,
104
+ out_channels,
105
+ kernel_size=kernel_size,
106
+ stride=stride,
107
+ dilation=dilation,
108
+ padding=((kernel_size - 1) // 2) * dilation,
109
+ bias=bias)),
110
+ nn.LeakyReLU(0.2),
111
+ spectral_norm(
112
+ nn.Conv2d(
113
+ out_channels,
114
+ out_channels,
115
+ kernel_size=kernel_size,
116
+ stride=stride,
117
+ dilation=dilation,
118
+ padding=((kernel_size - 1) // 2) * dilation,
119
+ bias=bias)),
120
+ )
121
+
122
+
123
+ class MSDilationBlock(nn.Module):
124
+ """Multi-scale dilation block."""
125
+
126
+ def __init__(self, in_channels, kernel_size=3, dilation=(1, 1, 1, 1), bias=True):
127
+ super(MSDilationBlock, self).__init__()
128
+
129
+ self.conv_blocks = nn.ModuleList()
130
+ for i in range(4):
131
+ self.conv_blocks.append(conv_block(in_channels, in_channels, kernel_size, dilation=dilation[i], bias=bias))
132
+ self.conv_fusion = spectral_norm(
133
+ nn.Conv2d(
134
+ in_channels * 4,
135
+ in_channels,
136
+ kernel_size=kernel_size,
137
+ stride=1,
138
+ padding=(kernel_size - 1) // 2,
139
+ bias=bias))
140
+
141
+ def forward(self, x):
142
+ out = []
143
+ for i in range(4):
144
+ out.append(self.conv_blocks[i](x))
145
+ out = torch.cat(out, 1)
146
+ out = self.conv_fusion(out) + x
147
+ return out
148
+
149
+
150
+ class UpResBlock(nn.Module):
151
+
152
+ def __init__(self, in_channel):
153
+ super(UpResBlock, self).__init__()
154
+ self.body = nn.Sequential(
155
+ nn.Conv2d(in_channel, in_channel, 3, 1, 1),
156
+ nn.LeakyReLU(0.2, True),
157
+ nn.Conv2d(in_channel, in_channel, 3, 1, 1),
158
+ )
159
+
160
+ def forward(self, x):
161
+ out = x + self.body(x)
162
+ return out
StableSR/basicsr/archs/discriminator_arch.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn as nn
2
+ from torch.nn import functional as F
3
+ from torch.nn.utils import spectral_norm
4
+
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+
7
+
8
+ @ARCH_REGISTRY.register()
9
+ class VGGStyleDiscriminator(nn.Module):
10
+ """VGG style discriminator with input size 128 x 128 or 256 x 256.
11
+
12
+ It is used to train SRGAN, ESRGAN, and VideoGAN.
13
+
14
+ Args:
15
+ num_in_ch (int): Channel number of inputs. Default: 3.
16
+ num_feat (int): Channel number of base intermediate features.Default: 64.
17
+ """
18
+
19
+ def __init__(self, num_in_ch, num_feat, input_size=128):
20
+ super(VGGStyleDiscriminator, self).__init__()
21
+ self.input_size = input_size
22
+ assert self.input_size == 128 or self.input_size == 256, (
23
+ f'input size must be 128 or 256, but received {input_size}')
24
+
25
+ self.conv0_0 = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1, bias=True)
26
+ self.conv0_1 = nn.Conv2d(num_feat, num_feat, 4, 2, 1, bias=False)
27
+ self.bn0_1 = nn.BatchNorm2d(num_feat, affine=True)
28
+
29
+ self.conv1_0 = nn.Conv2d(num_feat, num_feat * 2, 3, 1, 1, bias=False)
30
+ self.bn1_0 = nn.BatchNorm2d(num_feat * 2, affine=True)
31
+ self.conv1_1 = nn.Conv2d(num_feat * 2, num_feat * 2, 4, 2, 1, bias=False)
32
+ self.bn1_1 = nn.BatchNorm2d(num_feat * 2, affine=True)
33
+
34
+ self.conv2_0 = nn.Conv2d(num_feat * 2, num_feat * 4, 3, 1, 1, bias=False)
35
+ self.bn2_0 = nn.BatchNorm2d(num_feat * 4, affine=True)
36
+ self.conv2_1 = nn.Conv2d(num_feat * 4, num_feat * 4, 4, 2, 1, bias=False)
37
+ self.bn2_1 = nn.BatchNorm2d(num_feat * 4, affine=True)
38
+
39
+ self.conv3_0 = nn.Conv2d(num_feat * 4, num_feat * 8, 3, 1, 1, bias=False)
40
+ self.bn3_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
41
+ self.conv3_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
42
+ self.bn3_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
43
+
44
+ self.conv4_0 = nn.Conv2d(num_feat * 8, num_feat * 8, 3, 1, 1, bias=False)
45
+ self.bn4_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
46
+ self.conv4_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
47
+ self.bn4_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
48
+
49
+ if self.input_size == 256:
50
+ self.conv5_0 = nn.Conv2d(num_feat * 8, num_feat * 8, 3, 1, 1, bias=False)
51
+ self.bn5_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
52
+ self.conv5_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
53
+ self.bn5_1 = nn.BatchNorm2d(num_feat * 8, affine=True)
54
+
55
+ self.linear1 = nn.Linear(num_feat * 8 * 4 * 4, 100)
56
+ self.linear2 = nn.Linear(100, 1)
57
+
58
+ # activation function
59
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
60
+
61
+ def forward(self, x):
62
+ assert x.size(2) == self.input_size, (f'Input size must be identical to input_size, but received {x.size()}.')
63
+
64
+ feat = self.lrelu(self.conv0_0(x))
65
+ feat = self.lrelu(self.bn0_1(self.conv0_1(feat))) # output spatial size: /2
66
+
67
+ feat = self.lrelu(self.bn1_0(self.conv1_0(feat)))
68
+ feat = self.lrelu(self.bn1_1(self.conv1_1(feat))) # output spatial size: /4
69
+
70
+ feat = self.lrelu(self.bn2_0(self.conv2_0(feat)))
71
+ feat = self.lrelu(self.bn2_1(self.conv2_1(feat))) # output spatial size: /8
72
+
73
+ feat = self.lrelu(self.bn3_0(self.conv3_0(feat)))
74
+ feat = self.lrelu(self.bn3_1(self.conv3_1(feat))) # output spatial size: /16
75
+
76
+ feat = self.lrelu(self.bn4_0(self.conv4_0(feat)))
77
+ feat = self.lrelu(self.bn4_1(self.conv4_1(feat))) # output spatial size: /32
78
+
79
+ if self.input_size == 256:
80
+ feat = self.lrelu(self.bn5_0(self.conv5_0(feat)))
81
+ feat = self.lrelu(self.bn5_1(self.conv5_1(feat))) # output spatial size: / 64
82
+
83
+ # spatial size: (4, 4)
84
+ feat = feat.view(feat.size(0), -1)
85
+ feat = self.lrelu(self.linear1(feat))
86
+ out = self.linear2(feat)
87
+ return out
88
+
89
+
90
+ @ARCH_REGISTRY.register(suffix='basicsr')
91
+ class UNetDiscriminatorSN(nn.Module):
92
+ """Defines a U-Net discriminator with spectral normalization (SN)
93
+
94
+ It is used in Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
95
+
96
+ Arg:
97
+ num_in_ch (int): Channel number of inputs. Default: 3.
98
+ num_feat (int): Channel number of base intermediate features. Default: 64.
99
+ skip_connection (bool): Whether to use skip connections between U-Net. Default: True.
100
+ """
101
+
102
+ def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
103
+ super(UNetDiscriminatorSN, self).__init__()
104
+ self.skip_connection = skip_connection
105
+ norm = spectral_norm
106
+ # the first convolution
107
+ self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
108
+ # downsample
109
+ self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
110
+ self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
111
+ self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
112
+ # upsample
113
+ self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
114
+ self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
115
+ self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
116
+ # extra convolutions
117
+ self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
118
+ self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
119
+ self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)
120
+
121
+ def forward(self, x):
122
+ # downsample
123
+ x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
124
+ x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
125
+ x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
126
+ x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)
127
+
128
+ # upsample
129
+ x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
130
+ x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)
131
+
132
+ if self.skip_connection:
133
+ x4 = x4 + x2
134
+ x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
135
+ x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)
136
+
137
+ if self.skip_connection:
138
+ x5 = x5 + x1
139
+ x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
140
+ x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)
141
+
142
+ if self.skip_connection:
143
+ x6 = x6 + x0
144
+
145
+ # extra convolutions
146
+ out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
147
+ out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
148
+ out = self.conv9(out)
149
+
150
+ return out
StableSR/basicsr/archs/duf_arch.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from torch import nn as nn
4
+ from torch.nn import functional as F
5
+
6
+ from basicsr.utils.registry import ARCH_REGISTRY
7
+
8
+
9
+ class DenseBlocksTemporalReduce(nn.Module):
10
+ """A concatenation of 3 dense blocks with reduction in temporal dimension.
11
+
12
+ Note that the output temporal dimension is 6 fewer the input temporal dimension, since there are 3 blocks.
13
+
14
+ Args:
15
+ num_feat (int): Number of channels in the blocks. Default: 64.
16
+ num_grow_ch (int): Growing factor of the dense blocks. Default: 32
17
+ adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation.
18
+ Set to false if you want to train from scratch. Default: False.
19
+ """
20
+
21
+ def __init__(self, num_feat=64, num_grow_ch=32, adapt_official_weights=False):
22
+ super(DenseBlocksTemporalReduce, self).__init__()
23
+ if adapt_official_weights:
24
+ eps = 1e-3
25
+ momentum = 1e-3
26
+ else: # pytorch default values
27
+ eps = 1e-05
28
+ momentum = 0.1
29
+
30
+ self.temporal_reduce1 = nn.Sequential(
31
+ nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
32
+ nn.Conv3d(num_feat, num_feat, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True),
33
+ nn.BatchNorm3d(num_feat, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
34
+ nn.Conv3d(num_feat, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
35
+
36
+ self.temporal_reduce2 = nn.Sequential(
37
+ nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
38
+ nn.Conv3d(
39
+ num_feat + num_grow_ch,
40
+ num_feat + num_grow_ch, (1, 1, 1),
41
+ stride=(1, 1, 1),
42
+ padding=(0, 0, 0),
43
+ bias=True), nn.BatchNorm3d(num_feat + num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
44
+ nn.Conv3d(num_feat + num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
45
+
46
+ self.temporal_reduce3 = nn.Sequential(
47
+ nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
48
+ nn.Conv3d(
49
+ num_feat + 2 * num_grow_ch,
50
+ num_feat + 2 * num_grow_ch, (1, 1, 1),
51
+ stride=(1, 1, 1),
52
+ padding=(0, 0, 0),
53
+ bias=True), nn.BatchNorm3d(num_feat + 2 * num_grow_ch, eps=eps, momentum=momentum),
54
+ nn.ReLU(inplace=True),
55
+ nn.Conv3d(
56
+ num_feat + 2 * num_grow_ch, num_grow_ch, (3, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True))
57
+
58
+ def forward(self, x):
59
+ """
60
+ Args:
61
+ x (Tensor): Input tensor with shape (b, num_feat, t, h, w).
62
+
63
+ Returns:
64
+ Tensor: Output with shape (b, num_feat + num_grow_ch * 3, 1, h, w).
65
+ """
66
+ x1 = self.temporal_reduce1(x)
67
+ x1 = torch.cat((x[:, :, 1:-1, :, :], x1), 1)
68
+
69
+ x2 = self.temporal_reduce2(x1)
70
+ x2 = torch.cat((x1[:, :, 1:-1, :, :], x2), 1)
71
+
72
+ x3 = self.temporal_reduce3(x2)
73
+ x3 = torch.cat((x2[:, :, 1:-1, :, :], x3), 1)
74
+
75
+ return x3
76
+
77
+
78
+ class DenseBlocks(nn.Module):
79
+ """ A concatenation of N dense blocks.
80
+
81
+ Args:
82
+ num_feat (int): Number of channels in the blocks. Default: 64.
83
+ num_grow_ch (int): Growing factor of the dense blocks. Default: 32.
84
+ num_block (int): Number of dense blocks. The values are:
85
+ DUF-S (16 layers): 3
86
+ DUF-M (18 layers): 9
87
+ DUF-L (52 layers): 21
88
+ adapt_official_weights (bool): Whether to adapt the weights translated from the official implementation.
89
+ Set to false if you want to train from scratch. Default: False.
90
+ """
91
+
92
+ def __init__(self, num_block, num_feat=64, num_grow_ch=16, adapt_official_weights=False):
93
+ super(DenseBlocks, self).__init__()
94
+ if adapt_official_weights:
95
+ eps = 1e-3
96
+ momentum = 1e-3
97
+ else: # pytorch default values
98
+ eps = 1e-05
99
+ momentum = 0.1
100
+
101
+ self.dense_blocks = nn.ModuleList()
102
+ for i in range(0, num_block):
103
+ self.dense_blocks.append(
104
+ nn.Sequential(
105
+ nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum), nn.ReLU(inplace=True),
106
+ nn.Conv3d(
107
+ num_feat + i * num_grow_ch,
108
+ num_feat + i * num_grow_ch, (1, 1, 1),
109
+ stride=(1, 1, 1),
110
+ padding=(0, 0, 0),
111
+ bias=True), nn.BatchNorm3d(num_feat + i * num_grow_ch, eps=eps, momentum=momentum),
112
+ nn.ReLU(inplace=True),
113
+ nn.Conv3d(
114
+ num_feat + i * num_grow_ch,
115
+ num_grow_ch, (3, 3, 3),
116
+ stride=(1, 1, 1),
117
+ padding=(1, 1, 1),
118
+ bias=True)))
119
+
120
+ def forward(self, x):
121
+ """
122
+ Args:
123
+ x (Tensor): Input tensor with shape (b, num_feat, t, h, w).
124
+
125
+ Returns:
126
+ Tensor: Output with shape (b, num_feat + num_block * num_grow_ch, t, h, w).
127
+ """
128
+ for i in range(0, len(self.dense_blocks)):
129
+ y = self.dense_blocks[i](x)
130
+ x = torch.cat((x, y), 1)
131
+ return x
132
+
133
+
134
+ class DynamicUpsamplingFilter(nn.Module):
135
+ """Dynamic upsampling filter used in DUF.
136
+
137
+ Reference: https://github.com/yhjo09/VSR-DUF
138
+
139
+ It only supports input with 3 channels. And it applies the same filters to 3 channels.
140
+
141
+ Args:
142
+ filter_size (tuple): Filter size of generated filters. The shape is (kh, kw). Default: (5, 5).
143
+ """
144
+
145
+ def __init__(self, filter_size=(5, 5)):
146
+ super(DynamicUpsamplingFilter, self).__init__()
147
+ if not isinstance(filter_size, tuple):
148
+ raise TypeError(f'The type of filter_size must be tuple, but got type{filter_size}')
149
+ if len(filter_size) != 2:
150
+ raise ValueError(f'The length of filter size must be 2, but got {len(filter_size)}.')
151
+ # generate a local expansion filter, similar to im2col
152
+ self.filter_size = filter_size
153
+ filter_prod = np.prod(filter_size)
154
+ expansion_filter = torch.eye(int(filter_prod)).view(filter_prod, 1, *filter_size) # (kh*kw, 1, kh, kw)
155
+ self.expansion_filter = expansion_filter.repeat(3, 1, 1, 1) # repeat for all the 3 channels
156
+
157
+ def forward(self, x, filters):
158
+ """Forward function for DynamicUpsamplingFilter.
159
+
160
+ Args:
161
+ x (Tensor): Input image with 3 channels. The shape is (n, 3, h, w).
162
+ filters (Tensor): Generated dynamic filters. The shape is (n, filter_prod, upsampling_square, h, w).
163
+ filter_prod: prod of filter kernel size, e.g., 1*5*5=25.
164
+ upsampling_square: similar to pixel shuffle, upsampling_square = upsampling * upsampling.
165
+ e.g., for x 4 upsampling, upsampling_square= 4*4 = 16
166
+
167
+ Returns:
168
+ Tensor: Filtered image with shape (n, 3*upsampling_square, h, w)
169
+ """
170
+ n, filter_prod, upsampling_square, h, w = filters.size()
171
+ kh, kw = self.filter_size
172
+ expanded_input = F.conv2d(
173
+ x, self.expansion_filter.to(x), padding=(kh // 2, kw // 2), groups=3) # (n, 3*filter_prod, h, w)
174
+ expanded_input = expanded_input.view(n, 3, filter_prod, h, w).permute(0, 3, 4, 1,
175
+ 2) # (n, h, w, 3, filter_prod)
176
+ filters = filters.permute(0, 3, 4, 1, 2) # (n, h, w, filter_prod, upsampling_square]
177
+ out = torch.matmul(expanded_input, filters) # (n, h, w, 3, upsampling_square)
178
+ return out.permute(0, 3, 4, 1, 2).view(n, 3 * upsampling_square, h, w)
179
+
180
+
181
+ @ARCH_REGISTRY.register()
182
+ class DUF(nn.Module):
183
+ """Network architecture for DUF
184
+
185
+ ``Paper: Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation``
186
+
187
+ Reference: https://github.com/yhjo09/VSR-DUF
188
+
189
+ For all the models below, 'adapt_official_weights' is only necessary when
190
+ loading the weights converted from the official TensorFlow weights.
191
+ Please set it to False if you are training the model from scratch.
192
+
193
+ There are three models with different model size: DUF16Layers, DUF28Layers,
194
+ and DUF52Layers. This class is the base class for these models.
195
+
196
+ Args:
197
+ scale (int): The upsampling factor. Default: 4.
198
+ num_layer (int): The number of layers. Default: 52.
199
+ adapt_official_weights_weights (bool): Whether to adapt the weights
200
+ translated from the official implementation. Set to false if you
201
+ want to train from scratch. Default: False.
202
+ """
203
+
204
+ def __init__(self, scale=4, num_layer=52, adapt_official_weights=False):
205
+ super(DUF, self).__init__()
206
+ self.scale = scale
207
+ if adapt_official_weights:
208
+ eps = 1e-3
209
+ momentum = 1e-3
210
+ else: # pytorch default values
211
+ eps = 1e-05
212
+ momentum = 0.1
213
+
214
+ self.conv3d1 = nn.Conv3d(3, 64, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
215
+ self.dynamic_filter = DynamicUpsamplingFilter((5, 5))
216
+
217
+ if num_layer == 16:
218
+ num_block = 3
219
+ num_grow_ch = 32
220
+ elif num_layer == 28:
221
+ num_block = 9
222
+ num_grow_ch = 16
223
+ elif num_layer == 52:
224
+ num_block = 21
225
+ num_grow_ch = 16
226
+ else:
227
+ raise ValueError(f'Only supported (16, 28, 52) layers, but got {num_layer}.')
228
+
229
+ self.dense_block1 = DenseBlocks(
230
+ num_block=num_block, num_feat=64, num_grow_ch=num_grow_ch,
231
+ adapt_official_weights=adapt_official_weights) # T = 7
232
+ self.dense_block2 = DenseBlocksTemporalReduce(
233
+ 64 + num_grow_ch * num_block, num_grow_ch, adapt_official_weights=adapt_official_weights) # T = 1
234
+ channels = 64 + num_grow_ch * num_block + num_grow_ch * 3
235
+ self.bn3d2 = nn.BatchNorm3d(channels, eps=eps, momentum=momentum)
236
+ self.conv3d2 = nn.Conv3d(channels, 256, (1, 3, 3), stride=(1, 1, 1), padding=(0, 1, 1), bias=True)
237
+
238
+ self.conv3d_r1 = nn.Conv3d(256, 256, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
239
+ self.conv3d_r2 = nn.Conv3d(256, 3 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
240
+
241
+ self.conv3d_f1 = nn.Conv3d(256, 512, (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
242
+ self.conv3d_f2 = nn.Conv3d(
243
+ 512, 1 * 5 * 5 * (scale**2), (1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=True)
244
+
245
+ def forward(self, x):
246
+ """
247
+ Args:
248
+ x (Tensor): Input with shape (b, 7, c, h, w)
249
+
250
+ Returns:
251
+ Tensor: Output with shape (b, c, h * scale, w * scale)
252
+ """
253
+ num_batches, num_imgs, _, h, w = x.size()
254
+
255
+ x = x.permute(0, 2, 1, 3, 4) # (b, c, 7, h, w) for Conv3D
256
+ x_center = x[:, :, num_imgs // 2, :, :]
257
+
258
+ x = self.conv3d1(x)
259
+ x = self.dense_block1(x)
260
+ x = self.dense_block2(x)
261
+ x = F.relu(self.bn3d2(x), inplace=True)
262
+ x = F.relu(self.conv3d2(x), inplace=True)
263
+
264
+ # residual image
265
+ res = self.conv3d_r2(F.relu(self.conv3d_r1(x), inplace=True))
266
+
267
+ # filter
268
+ filter_ = self.conv3d_f2(F.relu(self.conv3d_f1(x), inplace=True))
269
+ filter_ = F.softmax(filter_.view(num_batches, 25, self.scale**2, h, w), dim=1)
270
+
271
+ # dynamic filter
272
+ out = self.dynamic_filter(x_center, filter_)
273
+ out += res.squeeze_(2)
274
+ out = F.pixel_shuffle(out, self.scale)
275
+
276
+ return out
StableSR/basicsr/archs/ecbsr_arch.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+
7
+
8
+ class SeqConv3x3(nn.Module):
9
+ """The re-parameterizable block used in the ECBSR architecture.
10
+
11
+ ``Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices``
12
+
13
+ Reference: https://github.com/xindongzhang/ECBSR
14
+
15
+ Args:
16
+ seq_type (str): Sequence type, option: conv1x1-conv3x3 | conv1x1-sobelx | conv1x1-sobely | conv1x1-laplacian.
17
+ in_channels (int): Channel number of input.
18
+ out_channels (int): Channel number of output.
19
+ depth_multiplier (int): Width multiplier in the expand-and-squeeze conv. Default: 1.
20
+ """
21
+
22
+ def __init__(self, seq_type, in_channels, out_channels, depth_multiplier=1):
23
+ super(SeqConv3x3, self).__init__()
24
+ self.seq_type = seq_type
25
+ self.in_channels = in_channels
26
+ self.out_channels = out_channels
27
+
28
+ if self.seq_type == 'conv1x1-conv3x3':
29
+ self.mid_planes = int(out_channels * depth_multiplier)
30
+ conv0 = torch.nn.Conv2d(self.in_channels, self.mid_planes, kernel_size=1, padding=0)
31
+ self.k0 = conv0.weight
32
+ self.b0 = conv0.bias
33
+
34
+ conv1 = torch.nn.Conv2d(self.mid_planes, self.out_channels, kernel_size=3)
35
+ self.k1 = conv1.weight
36
+ self.b1 = conv1.bias
37
+
38
+ elif self.seq_type == 'conv1x1-sobelx':
39
+ conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
40
+ self.k0 = conv0.weight
41
+ self.b0 = conv0.bias
42
+
43
+ # init scale and bias
44
+ scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
45
+ self.scale = nn.Parameter(scale)
46
+ bias = torch.randn(self.out_channels) * 1e-3
47
+ bias = torch.reshape(bias, (self.out_channels, ))
48
+ self.bias = nn.Parameter(bias)
49
+ # init mask
50
+ self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
51
+ for i in range(self.out_channels):
52
+ self.mask[i, 0, 0, 0] = 1.0
53
+ self.mask[i, 0, 1, 0] = 2.0
54
+ self.mask[i, 0, 2, 0] = 1.0
55
+ self.mask[i, 0, 0, 2] = -1.0
56
+ self.mask[i, 0, 1, 2] = -2.0
57
+ self.mask[i, 0, 2, 2] = -1.0
58
+ self.mask = nn.Parameter(data=self.mask, requires_grad=False)
59
+
60
+ elif self.seq_type == 'conv1x1-sobely':
61
+ conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
62
+ self.k0 = conv0.weight
63
+ self.b0 = conv0.bias
64
+
65
+ # init scale and bias
66
+ scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
67
+ self.scale = nn.Parameter(torch.FloatTensor(scale))
68
+ bias = torch.randn(self.out_channels) * 1e-3
69
+ bias = torch.reshape(bias, (self.out_channels, ))
70
+ self.bias = nn.Parameter(torch.FloatTensor(bias))
71
+ # init mask
72
+ self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
73
+ for i in range(self.out_channels):
74
+ self.mask[i, 0, 0, 0] = 1.0
75
+ self.mask[i, 0, 0, 1] = 2.0
76
+ self.mask[i, 0, 0, 2] = 1.0
77
+ self.mask[i, 0, 2, 0] = -1.0
78
+ self.mask[i, 0, 2, 1] = -2.0
79
+ self.mask[i, 0, 2, 2] = -1.0
80
+ self.mask = nn.Parameter(data=self.mask, requires_grad=False)
81
+
82
+ elif self.seq_type == 'conv1x1-laplacian':
83
+ conv0 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1, padding=0)
84
+ self.k0 = conv0.weight
85
+ self.b0 = conv0.bias
86
+
87
+ # init scale and bias
88
+ scale = torch.randn(size=(self.out_channels, 1, 1, 1)) * 1e-3
89
+ self.scale = nn.Parameter(torch.FloatTensor(scale))
90
+ bias = torch.randn(self.out_channels) * 1e-3
91
+ bias = torch.reshape(bias, (self.out_channels, ))
92
+ self.bias = nn.Parameter(torch.FloatTensor(bias))
93
+ # init mask
94
+ self.mask = torch.zeros((self.out_channels, 1, 3, 3), dtype=torch.float32)
95
+ for i in range(self.out_channels):
96
+ self.mask[i, 0, 0, 1] = 1.0
97
+ self.mask[i, 0, 1, 0] = 1.0
98
+ self.mask[i, 0, 1, 2] = 1.0
99
+ self.mask[i, 0, 2, 1] = 1.0
100
+ self.mask[i, 0, 1, 1] = -4.0
101
+ self.mask = nn.Parameter(data=self.mask, requires_grad=False)
102
+ else:
103
+ raise ValueError('The type of seqconv is not supported!')
104
+
105
+ def forward(self, x):
106
+ if self.seq_type == 'conv1x1-conv3x3':
107
+ # conv-1x1
108
+ y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
109
+ # explicitly padding with bias
110
+ y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
111
+ b0_pad = self.b0.view(1, -1, 1, 1)
112
+ y0[:, :, 0:1, :] = b0_pad
113
+ y0[:, :, -1:, :] = b0_pad
114
+ y0[:, :, :, 0:1] = b0_pad
115
+ y0[:, :, :, -1:] = b0_pad
116
+ # conv-3x3
117
+ y1 = F.conv2d(input=y0, weight=self.k1, bias=self.b1, stride=1)
118
+ else:
119
+ y0 = F.conv2d(input=x, weight=self.k0, bias=self.b0, stride=1)
120
+ # explicitly padding with bias
121
+ y0 = F.pad(y0, (1, 1, 1, 1), 'constant', 0)
122
+ b0_pad = self.b0.view(1, -1, 1, 1)
123
+ y0[:, :, 0:1, :] = b0_pad
124
+ y0[:, :, -1:, :] = b0_pad
125
+ y0[:, :, :, 0:1] = b0_pad
126
+ y0[:, :, :, -1:] = b0_pad
127
+ # conv-3x3
128
+ y1 = F.conv2d(input=y0, weight=self.scale * self.mask, bias=self.bias, stride=1, groups=self.out_channels)
129
+ return y1
130
+
131
+ def rep_params(self):
132
+ device = self.k0.get_device()
133
+ if device < 0:
134
+ device = None
135
+
136
+ if self.seq_type == 'conv1x1-conv3x3':
137
+ # re-param conv kernel
138
+ rep_weight = F.conv2d(input=self.k1, weight=self.k0.permute(1, 0, 2, 3))
139
+ # re-param conv bias
140
+ rep_bias = torch.ones(1, self.mid_planes, 3, 3, device=device) * self.b0.view(1, -1, 1, 1)
141
+ rep_bias = F.conv2d(input=rep_bias, weight=self.k1).view(-1, ) + self.b1
142
+ else:
143
+ tmp = self.scale * self.mask
144
+ k1 = torch.zeros((self.out_channels, self.out_channels, 3, 3), device=device)
145
+ for i in range(self.out_channels):
146
+ k1[i, i, :, :] = tmp[i, 0, :, :]
147
+ b1 = self.bias
148
+ # re-param conv kernel
149
+ rep_weight = F.conv2d(input=k1, weight=self.k0.permute(1, 0, 2, 3))
150
+ # re-param conv bias
151
+ rep_bias = torch.ones(1, self.out_channels, 3, 3, device=device) * self.b0.view(1, -1, 1, 1)
152
+ rep_bias = F.conv2d(input=rep_bias, weight=k1).view(-1, ) + b1
153
+ return rep_weight, rep_bias
154
+
155
+
156
+ class ECB(nn.Module):
157
+ """The ECB block used in the ECBSR architecture.
158
+
159
+ Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
160
+ Ref git repo: https://github.com/xindongzhang/ECBSR
161
+
162
+ Args:
163
+ in_channels (int): Channel number of input.
164
+ out_channels (int): Channel number of output.
165
+ depth_multiplier (int): Width multiplier in the expand-and-squeeze conv. Default: 1.
166
+ act_type (str): Activation type. Option: prelu | relu | rrelu | softplus | linear. Default: prelu.
167
+ with_idt (bool): Whether to use identity connection. Default: False.
168
+ """
169
+
170
+ def __init__(self, in_channels, out_channels, depth_multiplier, act_type='prelu', with_idt=False):
171
+ super(ECB, self).__init__()
172
+
173
+ self.depth_multiplier = depth_multiplier
174
+ self.in_channels = in_channels
175
+ self.out_channels = out_channels
176
+ self.act_type = act_type
177
+
178
+ if with_idt and (self.in_channels == self.out_channels):
179
+ self.with_idt = True
180
+ else:
181
+ self.with_idt = False
182
+
183
+ self.conv3x3 = torch.nn.Conv2d(self.in_channels, self.out_channels, kernel_size=3, padding=1)
184
+ self.conv1x1_3x3 = SeqConv3x3('conv1x1-conv3x3', self.in_channels, self.out_channels, self.depth_multiplier)
185
+ self.conv1x1_sbx = SeqConv3x3('conv1x1-sobelx', self.in_channels, self.out_channels)
186
+ self.conv1x1_sby = SeqConv3x3('conv1x1-sobely', self.in_channels, self.out_channels)
187
+ self.conv1x1_lpl = SeqConv3x3('conv1x1-laplacian', self.in_channels, self.out_channels)
188
+
189
+ if self.act_type == 'prelu':
190
+ self.act = nn.PReLU(num_parameters=self.out_channels)
191
+ elif self.act_type == 'relu':
192
+ self.act = nn.ReLU(inplace=True)
193
+ elif self.act_type == 'rrelu':
194
+ self.act = nn.RReLU(lower=-0.05, upper=0.05)
195
+ elif self.act_type == 'softplus':
196
+ self.act = nn.Softplus()
197
+ elif self.act_type == 'linear':
198
+ pass
199
+ else:
200
+ raise ValueError('The type of activation if not support!')
201
+
202
+ def forward(self, x):
203
+ if self.training:
204
+ y = self.conv3x3(x) + self.conv1x1_3x3(x) + self.conv1x1_sbx(x) + self.conv1x1_sby(x) + self.conv1x1_lpl(x)
205
+ if self.with_idt:
206
+ y += x
207
+ else:
208
+ rep_weight, rep_bias = self.rep_params()
209
+ y = F.conv2d(input=x, weight=rep_weight, bias=rep_bias, stride=1, padding=1)
210
+ if self.act_type != 'linear':
211
+ y = self.act(y)
212
+ return y
213
+
214
+ def rep_params(self):
215
+ weight0, bias0 = self.conv3x3.weight, self.conv3x3.bias
216
+ weight1, bias1 = self.conv1x1_3x3.rep_params()
217
+ weight2, bias2 = self.conv1x1_sbx.rep_params()
218
+ weight3, bias3 = self.conv1x1_sby.rep_params()
219
+ weight4, bias4 = self.conv1x1_lpl.rep_params()
220
+ rep_weight, rep_bias = (weight0 + weight1 + weight2 + weight3 + weight4), (
221
+ bias0 + bias1 + bias2 + bias3 + bias4)
222
+
223
+ if self.with_idt:
224
+ device = rep_weight.get_device()
225
+ if device < 0:
226
+ device = None
227
+ weight_idt = torch.zeros(self.out_channels, self.out_channels, 3, 3, device=device)
228
+ for i in range(self.out_channels):
229
+ weight_idt[i, i, 1, 1] = 1.0
230
+ bias_idt = 0.0
231
+ rep_weight, rep_bias = rep_weight + weight_idt, rep_bias + bias_idt
232
+ return rep_weight, rep_bias
233
+
234
+
235
+ @ARCH_REGISTRY.register()
236
+ class ECBSR(nn.Module):
237
+ """ECBSR architecture.
238
+
239
+ Paper: Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
240
+ Ref git repo: https://github.com/xindongzhang/ECBSR
241
+
242
+ Args:
243
+ num_in_ch (int): Channel number of inputs.
244
+ num_out_ch (int): Channel number of outputs.
245
+ num_block (int): Block number in the trunk network.
246
+ num_channel (int): Channel number.
247
+ with_idt (bool): Whether use identity in convolution layers.
248
+ act_type (str): Activation type.
249
+ scale (int): Upsampling factor.
250
+ """
251
+
252
+ def __init__(self, num_in_ch, num_out_ch, num_block, num_channel, with_idt, act_type, scale):
253
+ super(ECBSR, self).__init__()
254
+ self.num_in_ch = num_in_ch
255
+ self.scale = scale
256
+
257
+ backbone = []
258
+ backbone += [ECB(num_in_ch, num_channel, depth_multiplier=2.0, act_type=act_type, with_idt=with_idt)]
259
+ for _ in range(num_block):
260
+ backbone += [ECB(num_channel, num_channel, depth_multiplier=2.0, act_type=act_type, with_idt=with_idt)]
261
+ backbone += [
262
+ ECB(num_channel, num_out_ch * scale * scale, depth_multiplier=2.0, act_type='linear', with_idt=with_idt)
263
+ ]
264
+
265
+ self.backbone = nn.Sequential(*backbone)
266
+ self.upsampler = nn.PixelShuffle(scale)
267
+
268
+ def forward(self, x):
269
+ if self.num_in_ch > 1:
270
+ shortcut = torch.repeat_interleave(x, self.scale * self.scale, dim=1)
271
+ else:
272
+ shortcut = x # will repeat the input in the channel dimension (repeat scale * scale times)
273
+ y = self.backbone(x) + shortcut
274
+ y = self.upsampler(y)
275
+ return y
StableSR/basicsr/archs/edsr_arch.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+
4
+ from basicsr.archs.arch_util import ResidualBlockNoBN, Upsample, make_layer
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+
7
+
8
+ @ARCH_REGISTRY.register()
9
+ class EDSR(nn.Module):
10
+ """EDSR network structure.
11
+
12
+ Paper: Enhanced Deep Residual Networks for Single Image Super-Resolution.
13
+ Ref git repo: https://github.com/thstkdgus35/EDSR-PyTorch
14
+
15
+ Args:
16
+ num_in_ch (int): Channel number of inputs.
17
+ num_out_ch (int): Channel number of outputs.
18
+ num_feat (int): Channel number of intermediate features.
19
+ Default: 64.
20
+ num_block (int): Block number in the trunk network. Default: 16.
21
+ upscale (int): Upsampling factor. Support 2^n and 3.
22
+ Default: 4.
23
+ res_scale (float): Used to scale the residual in residual block.
24
+ Default: 1.
25
+ img_range (float): Image range. Default: 255.
26
+ rgb_mean (tuple[float]): Image mean in RGB orders.
27
+ Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
28
+ """
29
+
30
+ def __init__(self,
31
+ num_in_ch,
32
+ num_out_ch,
33
+ num_feat=64,
34
+ num_block=16,
35
+ upscale=4,
36
+ res_scale=1,
37
+ img_range=255.,
38
+ rgb_mean=(0.4488, 0.4371, 0.4040)):
39
+ super(EDSR, self).__init__()
40
+
41
+ self.img_range = img_range
42
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
43
+
44
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
45
+ self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat, res_scale=res_scale, pytorch_init=True)
46
+ self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
47
+ self.upsample = Upsample(upscale, num_feat)
48
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
49
+
50
+ def forward(self, x):
51
+ self.mean = self.mean.type_as(x)
52
+
53
+ x = (x - self.mean) * self.img_range
54
+ x = self.conv_first(x)
55
+ res = self.conv_after_body(self.body(x))
56
+ res += x
57
+
58
+ x = self.conv_last(self.upsample(res))
59
+ x = x / self.img_range + self.mean
60
+
61
+ return x
StableSR/basicsr/archs/edvr_arch.py ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+ from .arch_util import DCNv2Pack, ResidualBlockNoBN, make_layer
7
+
8
+
9
+ class PCDAlignment(nn.Module):
10
+ """Alignment module using Pyramid, Cascading and Deformable convolution
11
+ (PCD). It is used in EDVR.
12
+
13
+ ``Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks``
14
+
15
+ Args:
16
+ num_feat (int): Channel number of middle features. Default: 64.
17
+ deformable_groups (int): Deformable groups. Defaults: 8.
18
+ """
19
+
20
+ def __init__(self, num_feat=64, deformable_groups=8):
21
+ super(PCDAlignment, self).__init__()
22
+
23
+ # Pyramid has three levels:
24
+ # L3: level 3, 1/4 spatial size
25
+ # L2: level 2, 1/2 spatial size
26
+ # L1: level 1, original spatial size
27
+ self.offset_conv1 = nn.ModuleDict()
28
+ self.offset_conv2 = nn.ModuleDict()
29
+ self.offset_conv3 = nn.ModuleDict()
30
+ self.dcn_pack = nn.ModuleDict()
31
+ self.feat_conv = nn.ModuleDict()
32
+
33
+ # Pyramids
34
+ for i in range(3, 0, -1):
35
+ level = f'l{i}'
36
+ self.offset_conv1[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
37
+ if i == 3:
38
+ self.offset_conv2[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
39
+ else:
40
+ self.offset_conv2[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
41
+ self.offset_conv3[level] = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
42
+ self.dcn_pack[level] = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)
43
+
44
+ if i < 3:
45
+ self.feat_conv[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
46
+
47
+ # Cascading dcn
48
+ self.cas_offset_conv1 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
49
+ self.cas_offset_conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
50
+ self.cas_dcnpack = DCNv2Pack(num_feat, num_feat, 3, padding=1, deformable_groups=deformable_groups)
51
+
52
+ self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
53
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
54
+
55
+ def forward(self, nbr_feat_l, ref_feat_l):
56
+ """Align neighboring frame features to the reference frame features.
57
+
58
+ Args:
59
+ nbr_feat_l (list[Tensor]): Neighboring feature list. It
60
+ contains three pyramid levels (L1, L2, L3),
61
+ each with shape (b, c, h, w).
62
+ ref_feat_l (list[Tensor]): Reference feature list. It
63
+ contains three pyramid levels (L1, L2, L3),
64
+ each with shape (b, c, h, w).
65
+
66
+ Returns:
67
+ Tensor: Aligned features.
68
+ """
69
+ # Pyramids
70
+ upsampled_offset, upsampled_feat = None, None
71
+ for i in range(3, 0, -1):
72
+ level = f'l{i}'
73
+ offset = torch.cat([nbr_feat_l[i - 1], ref_feat_l[i - 1]], dim=1)
74
+ offset = self.lrelu(self.offset_conv1[level](offset))
75
+ if i == 3:
76
+ offset = self.lrelu(self.offset_conv2[level](offset))
77
+ else:
78
+ offset = self.lrelu(self.offset_conv2[level](torch.cat([offset, upsampled_offset], dim=1)))
79
+ offset = self.lrelu(self.offset_conv3[level](offset))
80
+
81
+ feat = self.dcn_pack[level](nbr_feat_l[i - 1], offset)
82
+ if i < 3:
83
+ feat = self.feat_conv[level](torch.cat([feat, upsampled_feat], dim=1))
84
+ if i > 1:
85
+ feat = self.lrelu(feat)
86
+
87
+ if i > 1: # upsample offset and features
88
+ # x2: when we upsample the offset, we should also enlarge
89
+ # the magnitude.
90
+ upsampled_offset = self.upsample(offset) * 2
91
+ upsampled_feat = self.upsample(feat)
92
+
93
+ # Cascading
94
+ offset = torch.cat([feat, ref_feat_l[0]], dim=1)
95
+ offset = self.lrelu(self.cas_offset_conv2(self.lrelu(self.cas_offset_conv1(offset))))
96
+ feat = self.lrelu(self.cas_dcnpack(feat, offset))
97
+ return feat
98
+
99
+
100
+ class TSAFusion(nn.Module):
101
+ """Temporal Spatial Attention (TSA) fusion module.
102
+
103
+ Temporal: Calculate the correlation between center frame and
104
+ neighboring frames;
105
+ Spatial: It has 3 pyramid levels, the attention is similar to SFT.
106
+ (SFT: Recovering realistic texture in image super-resolution by deep
107
+ spatial feature transform.)
108
+
109
+ Args:
110
+ num_feat (int): Channel number of middle features. Default: 64.
111
+ num_frame (int): Number of frames. Default: 5.
112
+ center_frame_idx (int): The index of center frame. Default: 2.
113
+ """
114
+
115
+ def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2):
116
+ super(TSAFusion, self).__init__()
117
+ self.center_frame_idx = center_frame_idx
118
+ # temporal attention (before fusion conv)
119
+ self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
120
+ self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
121
+ self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
122
+
123
+ # spatial attention (after fusion conv)
124
+ self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)
125
+ self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
126
+ self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1)
127
+ self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1)
128
+ self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
129
+ self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1)
130
+ self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
131
+ self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1)
132
+ self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
133
+ self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
134
+ self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1)
135
+ self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1)
136
+
137
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
138
+ self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
139
+
140
+ def forward(self, aligned_feat):
141
+ """
142
+ Args:
143
+ aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w).
144
+
145
+ Returns:
146
+ Tensor: Features after TSA with the shape (b, c, h, w).
147
+ """
148
+ b, t, c, h, w = aligned_feat.size()
149
+ # temporal attention
150
+ embedding_ref = self.temporal_attn1(aligned_feat[:, self.center_frame_idx, :, :, :].clone())
151
+ embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w))
152
+ embedding = embedding.view(b, t, -1, h, w) # (b, t, c, h, w)
153
+
154
+ corr_l = [] # correlation list
155
+ for i in range(t):
156
+ emb_neighbor = embedding[:, i, :, :, :]
157
+ corr = torch.sum(emb_neighbor * embedding_ref, 1) # (b, h, w)
158
+ corr_l.append(corr.unsqueeze(1)) # (b, 1, h, w)
159
+ corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1)) # (b, t, h, w)
160
+ corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w)
161
+ corr_prob = corr_prob.contiguous().view(b, -1, h, w) # (b, t*c, h, w)
162
+ aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob
163
+
164
+ # fusion
165
+ feat = self.lrelu(self.feat_fusion(aligned_feat))
166
+
167
+ # spatial attention
168
+ attn = self.lrelu(self.spatial_attn1(aligned_feat))
169
+ attn_max = self.max_pool(attn)
170
+ attn_avg = self.avg_pool(attn)
171
+ attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg], dim=1)))
172
+ # pyramid levels
173
+ attn_level = self.lrelu(self.spatial_attn_l1(attn))
174
+ attn_max = self.max_pool(attn_level)
175
+ attn_avg = self.avg_pool(attn_level)
176
+ attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max, attn_avg], dim=1)))
177
+ attn_level = self.lrelu(self.spatial_attn_l3(attn_level))
178
+ attn_level = self.upsample(attn_level)
179
+
180
+ attn = self.lrelu(self.spatial_attn3(attn)) + attn_level
181
+ attn = self.lrelu(self.spatial_attn4(attn))
182
+ attn = self.upsample(attn)
183
+ attn = self.spatial_attn5(attn)
184
+ attn_add = self.spatial_attn_add2(self.lrelu(self.spatial_attn_add1(attn)))
185
+ attn = torch.sigmoid(attn)
186
+
187
+ # after initialization, * 2 makes (attn * 2) to be close to 1.
188
+ feat = feat * attn * 2 + attn_add
189
+ return feat
190
+
191
+
192
+ class PredeblurModule(nn.Module):
193
+ """Pre-dublur module.
194
+
195
+ Args:
196
+ num_in_ch (int): Channel number of input image. Default: 3.
197
+ num_feat (int): Channel number of intermediate features. Default: 64.
198
+ hr_in (bool): Whether the input has high resolution. Default: False.
199
+ """
200
+
201
+ def __init__(self, num_in_ch=3, num_feat=64, hr_in=False):
202
+ super(PredeblurModule, self).__init__()
203
+ self.hr_in = hr_in
204
+
205
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
206
+ if self.hr_in:
207
+ # downsample x4 by stride conv
208
+ self.stride_conv_hr1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
209
+ self.stride_conv_hr2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
210
+
211
+ # generate feature pyramid
212
+ self.stride_conv_l2 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
213
+ self.stride_conv_l3 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
214
+
215
+ self.resblock_l3 = ResidualBlockNoBN(num_feat=num_feat)
216
+ self.resblock_l2_1 = ResidualBlockNoBN(num_feat=num_feat)
217
+ self.resblock_l2_2 = ResidualBlockNoBN(num_feat=num_feat)
218
+ self.resblock_l1 = nn.ModuleList([ResidualBlockNoBN(num_feat=num_feat) for i in range(5)])
219
+
220
+ self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
221
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
222
+
223
+ def forward(self, x):
224
+ feat_l1 = self.lrelu(self.conv_first(x))
225
+ if self.hr_in:
226
+ feat_l1 = self.lrelu(self.stride_conv_hr1(feat_l1))
227
+ feat_l1 = self.lrelu(self.stride_conv_hr2(feat_l1))
228
+
229
+ # generate feature pyramid
230
+ feat_l2 = self.lrelu(self.stride_conv_l2(feat_l1))
231
+ feat_l3 = self.lrelu(self.stride_conv_l3(feat_l2))
232
+
233
+ feat_l3 = self.upsample(self.resblock_l3(feat_l3))
234
+ feat_l2 = self.resblock_l2_1(feat_l2) + feat_l3
235
+ feat_l2 = self.upsample(self.resblock_l2_2(feat_l2))
236
+
237
+ for i in range(2):
238
+ feat_l1 = self.resblock_l1[i](feat_l1)
239
+ feat_l1 = feat_l1 + feat_l2
240
+ for i in range(2, 5):
241
+ feat_l1 = self.resblock_l1[i](feat_l1)
242
+ return feat_l1
243
+
244
+
245
+ @ARCH_REGISTRY.register()
246
+ class EDVR(nn.Module):
247
+ """EDVR network structure for video super-resolution.
248
+
249
+ Now only support X4 upsampling factor.
250
+
251
+ ``Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks``
252
+
253
+ Args:
254
+ num_in_ch (int): Channel number of input image. Default: 3.
255
+ num_out_ch (int): Channel number of output image. Default: 3.
256
+ num_feat (int): Channel number of intermediate features. Default: 64.
257
+ num_frame (int): Number of input frames. Default: 5.
258
+ deformable_groups (int): Deformable groups. Defaults: 8.
259
+ num_extract_block (int): Number of blocks for feature extraction.
260
+ Default: 5.
261
+ num_reconstruct_block (int): Number of blocks for reconstruction.
262
+ Default: 10.
263
+ center_frame_idx (int): The index of center frame. Frame counting from
264
+ 0. Default: Middle of input frames.
265
+ hr_in (bool): Whether the input has high resolution. Default: False.
266
+ with_predeblur (bool): Whether has predeblur module.
267
+ Default: False.
268
+ with_tsa (bool): Whether has TSA module. Default: True.
269
+ """
270
+
271
+ def __init__(self,
272
+ num_in_ch=3,
273
+ num_out_ch=3,
274
+ num_feat=64,
275
+ num_frame=5,
276
+ deformable_groups=8,
277
+ num_extract_block=5,
278
+ num_reconstruct_block=10,
279
+ center_frame_idx=None,
280
+ hr_in=False,
281
+ with_predeblur=False,
282
+ with_tsa=True):
283
+ super(EDVR, self).__init__()
284
+ if center_frame_idx is None:
285
+ self.center_frame_idx = num_frame // 2
286
+ else:
287
+ self.center_frame_idx = center_frame_idx
288
+ self.hr_in = hr_in
289
+ self.with_predeblur = with_predeblur
290
+ self.with_tsa = with_tsa
291
+
292
+ # extract features for each frame
293
+ if self.with_predeblur:
294
+ self.predeblur = PredeblurModule(num_feat=num_feat, hr_in=self.hr_in)
295
+ self.conv_1x1 = nn.Conv2d(num_feat, num_feat, 1, 1)
296
+ else:
297
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
298
+
299
+ # extract pyramid features
300
+ self.feature_extraction = make_layer(ResidualBlockNoBN, num_extract_block, num_feat=num_feat)
301
+ self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
302
+ self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
303
+ self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1)
304
+ self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
305
+
306
+ # pcd and tsa module
307
+ self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=deformable_groups)
308
+ if self.with_tsa:
309
+ self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_frame, center_frame_idx=self.center_frame_idx)
310
+ else:
311
+ self.fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
312
+
313
+ # reconstruction
314
+ self.reconstruction = make_layer(ResidualBlockNoBN, num_reconstruct_block, num_feat=num_feat)
315
+ # upsample
316
+ self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
317
+ self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1)
318
+ self.pixel_shuffle = nn.PixelShuffle(2)
319
+ self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
320
+ self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
321
+
322
+ # activation function
323
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
324
+
325
+ def forward(self, x):
326
+ b, t, c, h, w = x.size()
327
+ if self.hr_in:
328
+ assert h % 16 == 0 and w % 16 == 0, ('The height and width must be multiple of 16.')
329
+ else:
330
+ assert h % 4 == 0 and w % 4 == 0, ('The height and width must be multiple of 4.')
331
+
332
+ x_center = x[:, self.center_frame_idx, :, :, :].contiguous()
333
+
334
+ # extract features for each frame
335
+ # L1
336
+ if self.with_predeblur:
337
+ feat_l1 = self.conv_1x1(self.predeblur(x.view(-1, c, h, w)))
338
+ if self.hr_in:
339
+ h, w = h // 4, w // 4
340
+ else:
341
+ feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w)))
342
+
343
+ feat_l1 = self.feature_extraction(feat_l1)
344
+ # L2
345
+ feat_l2 = self.lrelu(self.conv_l2_1(feat_l1))
346
+ feat_l2 = self.lrelu(self.conv_l2_2(feat_l2))
347
+ # L3
348
+ feat_l3 = self.lrelu(self.conv_l3_1(feat_l2))
349
+ feat_l3 = self.lrelu(self.conv_l3_2(feat_l3))
350
+
351
+ feat_l1 = feat_l1.view(b, t, -1, h, w)
352
+ feat_l2 = feat_l2.view(b, t, -1, h // 2, w // 2)
353
+ feat_l3 = feat_l3.view(b, t, -1, h // 4, w // 4)
354
+
355
+ # PCD alignment
356
+ ref_feat_l = [ # reference feature list
357
+ feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(),
358
+ feat_l3[:, self.center_frame_idx, :, :, :].clone()
359
+ ]
360
+ aligned_feat = []
361
+ for i in range(t):
362
+ nbr_feat_l = [ # neighboring feature list
363
+ feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone()
364
+ ]
365
+ aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l))
366
+ aligned_feat = torch.stack(aligned_feat, dim=1) # (b, t, c, h, w)
367
+
368
+ if not self.with_tsa:
369
+ aligned_feat = aligned_feat.view(b, -1, h, w)
370
+ feat = self.fusion(aligned_feat)
371
+
372
+ out = self.reconstruction(feat)
373
+ out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
374
+ out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
375
+ out = self.lrelu(self.conv_hr(out))
376
+ out = self.conv_last(out)
377
+ if self.hr_in:
378
+ base = x_center
379
+ else:
380
+ base = F.interpolate(x_center, scale_factor=4, mode='bilinear', align_corners=False)
381
+ out += base
382
+ return out
StableSR/basicsr/archs/hifacegan_arch.py ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from basicsr.utils.registry import ARCH_REGISTRY
7
+ from .hifacegan_util import BaseNetwork, LIPEncoder, SPADEResnetBlock, get_nonspade_norm_layer
8
+
9
+
10
+ class SPADEGenerator(BaseNetwork):
11
+ """Generator with SPADEResBlock"""
12
+
13
+ def __init__(self,
14
+ num_in_ch=3,
15
+ num_feat=64,
16
+ use_vae=False,
17
+ z_dim=256,
18
+ crop_size=512,
19
+ norm_g='spectralspadesyncbatch3x3',
20
+ is_train=True,
21
+ init_train_phase=3): # progressive training disabled
22
+ super().__init__()
23
+ self.nf = num_feat
24
+ self.input_nc = num_in_ch
25
+ self.is_train = is_train
26
+ self.train_phase = init_train_phase
27
+
28
+ self.scale_ratio = 5 # hardcoded now
29
+ self.sw = crop_size // (2**self.scale_ratio)
30
+ self.sh = self.sw # 20210519: By default use square image, aspect_ratio = 1.0
31
+
32
+ if use_vae:
33
+ # In case of VAE, we will sample from random z vector
34
+ self.fc = nn.Linear(z_dim, 16 * self.nf * self.sw * self.sh)
35
+ else:
36
+ # Otherwise, we make the network deterministic by starting with
37
+ # downsampled segmentation map instead of random z
38
+ self.fc = nn.Conv2d(num_in_ch, 16 * self.nf, 3, padding=1)
39
+
40
+ self.head_0 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)
41
+
42
+ self.g_middle_0 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)
43
+ self.g_middle_1 = SPADEResnetBlock(16 * self.nf, 16 * self.nf, norm_g)
44
+
45
+ self.ups = nn.ModuleList([
46
+ SPADEResnetBlock(16 * self.nf, 8 * self.nf, norm_g),
47
+ SPADEResnetBlock(8 * self.nf, 4 * self.nf, norm_g),
48
+ SPADEResnetBlock(4 * self.nf, 2 * self.nf, norm_g),
49
+ SPADEResnetBlock(2 * self.nf, 1 * self.nf, norm_g)
50
+ ])
51
+
52
+ self.to_rgbs = nn.ModuleList([
53
+ nn.Conv2d(8 * self.nf, 3, 3, padding=1),
54
+ nn.Conv2d(4 * self.nf, 3, 3, padding=1),
55
+ nn.Conv2d(2 * self.nf, 3, 3, padding=1),
56
+ nn.Conv2d(1 * self.nf, 3, 3, padding=1)
57
+ ])
58
+
59
+ self.up = nn.Upsample(scale_factor=2)
60
+
61
+ def encode(self, input_tensor):
62
+ """
63
+ Encode input_tensor into feature maps, can be overridden in derived classes
64
+ Default: nearest downsampling of 2**5 = 32 times
65
+ """
66
+ h, w = input_tensor.size()[-2:]
67
+ sh, sw = h // 2**self.scale_ratio, w // 2**self.scale_ratio
68
+ x = F.interpolate(input_tensor, size=(sh, sw))
69
+ return self.fc(x)
70
+
71
+ def forward(self, x):
72
+ # In oroginal SPADE, seg means a segmentation map, but here we use x instead.
73
+ seg = x
74
+
75
+ x = self.encode(x)
76
+ x = self.head_0(x, seg)
77
+
78
+ x = self.up(x)
79
+ x = self.g_middle_0(x, seg)
80
+ x = self.g_middle_1(x, seg)
81
+
82
+ if self.is_train:
83
+ phase = self.train_phase + 1
84
+ else:
85
+ phase = len(self.to_rgbs)
86
+
87
+ for i in range(phase):
88
+ x = self.up(x)
89
+ x = self.ups[i](x, seg)
90
+
91
+ x = self.to_rgbs[phase - 1](F.leaky_relu(x, 2e-1))
92
+ x = torch.tanh(x)
93
+
94
+ return x
95
+
96
+ def mixed_guidance_forward(self, input_x, seg=None, n=0, mode='progressive'):
97
+ """
98
+ A helper class for subspace visualization. Input and seg are different images.
99
+ For the first n levels (including encoder) we use input, for the rest we use seg.
100
+
101
+ If mode = 'progressive', the output's like: AAABBB
102
+ If mode = 'one_plug', the output's like: AAABAA
103
+ If mode = 'one_ablate', the output's like: BBBABB
104
+ """
105
+
106
+ if seg is None:
107
+ return self.forward(input_x)
108
+
109
+ if self.is_train:
110
+ phase = self.train_phase + 1
111
+ else:
112
+ phase = len(self.to_rgbs)
113
+
114
+ if mode == 'progressive':
115
+ n = max(min(n, 4 + phase), 0)
116
+ guide_list = [input_x] * n + [seg] * (4 + phase - n)
117
+ elif mode == 'one_plug':
118
+ n = max(min(n, 4 + phase - 1), 0)
119
+ guide_list = [seg] * (4 + phase)
120
+ guide_list[n] = input_x
121
+ elif mode == 'one_ablate':
122
+ if n > 3 + phase:
123
+ return self.forward(input_x)
124
+ guide_list = [input_x] * (4 + phase)
125
+ guide_list[n] = seg
126
+
127
+ x = self.encode(guide_list[0])
128
+ x = self.head_0(x, guide_list[1])
129
+
130
+ x = self.up(x)
131
+ x = self.g_middle_0(x, guide_list[2])
132
+ x = self.g_middle_1(x, guide_list[3])
133
+
134
+ for i in range(phase):
135
+ x = self.up(x)
136
+ x = self.ups[i](x, guide_list[4 + i])
137
+
138
+ x = self.to_rgbs[phase - 1](F.leaky_relu(x, 2e-1))
139
+ x = torch.tanh(x)
140
+
141
+ return x
142
+
143
+
144
+ @ARCH_REGISTRY.register()
145
+ class HiFaceGAN(SPADEGenerator):
146
+ """
147
+ HiFaceGAN: SPADEGenerator with a learnable feature encoder
148
+ Current encoder design: LIPEncoder
149
+ """
150
+
151
+ def __init__(self,
152
+ num_in_ch=3,
153
+ num_feat=64,
154
+ use_vae=False,
155
+ z_dim=256,
156
+ crop_size=512,
157
+ norm_g='spectralspadesyncbatch3x3',
158
+ is_train=True,
159
+ init_train_phase=3):
160
+ super().__init__(num_in_ch, num_feat, use_vae, z_dim, crop_size, norm_g, is_train, init_train_phase)
161
+ self.lip_encoder = LIPEncoder(num_in_ch, num_feat, self.sw, self.sh, self.scale_ratio)
162
+
163
+ def encode(self, input_tensor):
164
+ return self.lip_encoder(input_tensor)
165
+
166
+
167
+ @ARCH_REGISTRY.register()
168
+ class HiFaceGANDiscriminator(BaseNetwork):
169
+ """
170
+ Inspired by pix2pixHD multiscale discriminator.
171
+
172
+ Args:
173
+ num_in_ch (int): Channel number of inputs. Default: 3.
174
+ num_out_ch (int): Channel number of outputs. Default: 3.
175
+ conditional_d (bool): Whether use conditional discriminator.
176
+ Default: True.
177
+ num_d (int): Number of Multiscale discriminators. Default: 3.
178
+ n_layers_d (int): Number of downsample layers in each D. Default: 4.
179
+ num_feat (int): Channel number of base intermediate features.
180
+ Default: 64.
181
+ norm_d (str): String to determine normalization layers in D.
182
+ Choices: [spectral][instance/batch/syncbatch]
183
+ Default: 'spectralinstance'.
184
+ keep_features (bool): Keep intermediate features for matching loss, etc.
185
+ Default: True.
186
+ """
187
+
188
+ def __init__(self,
189
+ num_in_ch=3,
190
+ num_out_ch=3,
191
+ conditional_d=True,
192
+ num_d=2,
193
+ n_layers_d=4,
194
+ num_feat=64,
195
+ norm_d='spectralinstance',
196
+ keep_features=True):
197
+ super().__init__()
198
+ self.num_d = num_d
199
+
200
+ input_nc = num_in_ch
201
+ if conditional_d:
202
+ input_nc += num_out_ch
203
+
204
+ for i in range(num_d):
205
+ subnet_d = NLayerDiscriminator(input_nc, n_layers_d, num_feat, norm_d, keep_features)
206
+ self.add_module(f'discriminator_{i}', subnet_d)
207
+
208
+ def downsample(self, x):
209
+ return F.avg_pool2d(x, kernel_size=3, stride=2, padding=[1, 1], count_include_pad=False)
210
+
211
+ # Returns list of lists of discriminator outputs.
212
+ # The final result is of size opt.num_d x opt.n_layers_D
213
+ def forward(self, x):
214
+ result = []
215
+ for _, _net_d in self.named_children():
216
+ out = _net_d(x)
217
+ result.append(out)
218
+ x = self.downsample(x)
219
+
220
+ return result
221
+
222
+
223
+ class NLayerDiscriminator(BaseNetwork):
224
+ """Defines the PatchGAN discriminator with the specified arguments."""
225
+
226
+ def __init__(self, input_nc, n_layers_d, num_feat, norm_d, keep_features):
227
+ super().__init__()
228
+ kw = 4
229
+ padw = int(np.ceil((kw - 1.0) / 2))
230
+ nf = num_feat
231
+ self.keep_features = keep_features
232
+
233
+ norm_layer = get_nonspade_norm_layer(norm_d)
234
+ sequence = [[nn.Conv2d(input_nc, nf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, False)]]
235
+
236
+ for n in range(1, n_layers_d):
237
+ nf_prev = nf
238
+ nf = min(nf * 2, 512)
239
+ stride = 1 if n == n_layers_d - 1 else 2
240
+ sequence += [[
241
+ norm_layer(nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=stride, padding=padw)),
242
+ nn.LeakyReLU(0.2, False)
243
+ ]]
244
+
245
+ sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
246
+
247
+ # We divide the layers into groups to extract intermediate layer outputs
248
+ for n in range(len(sequence)):
249
+ self.add_module('model' + str(n), nn.Sequential(*sequence[n]))
250
+
251
+ def forward(self, x):
252
+ results = [x]
253
+ for submodel in self.children():
254
+ intermediate_output = submodel(results[-1])
255
+ results.append(intermediate_output)
256
+
257
+ if self.keep_features:
258
+ return results[1:]
259
+ else:
260
+ return results[-1]
StableSR/basicsr/archs/hifacegan_util.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from torch.nn import init
6
+ # Warning: spectral norm could be buggy
7
+ # under eval mode and multi-GPU inference
8
+ # A workaround is sticking to single-GPU inference and train mode
9
+ from torch.nn.utils import spectral_norm
10
+
11
+
12
+ class SPADE(nn.Module):
13
+
14
+ def __init__(self, config_text, norm_nc, label_nc):
15
+ super().__init__()
16
+
17
+ assert config_text.startswith('spade')
18
+ parsed = re.search('spade(\\D+)(\\d)x\\d', config_text)
19
+ param_free_norm_type = str(parsed.group(1))
20
+ ks = int(parsed.group(2))
21
+
22
+ if param_free_norm_type == 'instance':
23
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc)
24
+ elif param_free_norm_type == 'syncbatch':
25
+ print('SyncBatchNorm is currently not supported under single-GPU mode, switch to "instance" instead')
26
+ self.param_free_norm = nn.InstanceNorm2d(norm_nc)
27
+ elif param_free_norm_type == 'batch':
28
+ self.param_free_norm = nn.BatchNorm2d(norm_nc, affine=False)
29
+ else:
30
+ raise ValueError(f'{param_free_norm_type} is not a recognized param-free norm type in SPADE')
31
+
32
+ # The dimension of the intermediate embedding space. Yes, hardcoded.
33
+ nhidden = 128 if norm_nc > 128 else norm_nc
34
+
35
+ pw = ks // 2
36
+ self.mlp_shared = nn.Sequential(nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), nn.ReLU())
37
+ self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw, bias=False)
38
+ self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw, bias=False)
39
+
40
+ def forward(self, x, segmap):
41
+
42
+ # Part 1. generate parameter-free normalized activations
43
+ normalized = self.param_free_norm(x)
44
+
45
+ # Part 2. produce scaling and bias conditioned on semantic map
46
+ segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
47
+ actv = self.mlp_shared(segmap)
48
+ gamma = self.mlp_gamma(actv)
49
+ beta = self.mlp_beta(actv)
50
+
51
+ # apply scale and bias
52
+ out = normalized * gamma + beta
53
+
54
+ return out
55
+
56
+
57
+ class SPADEResnetBlock(nn.Module):
58
+ """
59
+ ResNet block that uses SPADE. It differs from the ResNet block of pix2pixHD in that
60
+ it takes in the segmentation map as input, learns the skip connection if necessary,
61
+ and applies normalization first and then convolution.
62
+ This architecture seemed like a standard architecture for unconditional or
63
+ class-conditional GAN architecture using residual block.
64
+ The code was inspired from https://github.com/LMescheder/GAN_stability.
65
+ """
66
+
67
+ def __init__(self, fin, fout, norm_g='spectralspadesyncbatch3x3', semantic_nc=3):
68
+ super().__init__()
69
+ # Attributes
70
+ self.learned_shortcut = (fin != fout)
71
+ fmiddle = min(fin, fout)
72
+
73
+ # create conv layers
74
+ self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=1)
75
+ self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=1)
76
+ if self.learned_shortcut:
77
+ self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
78
+
79
+ # apply spectral norm if specified
80
+ if 'spectral' in norm_g:
81
+ self.conv_0 = spectral_norm(self.conv_0)
82
+ self.conv_1 = spectral_norm(self.conv_1)
83
+ if self.learned_shortcut:
84
+ self.conv_s = spectral_norm(self.conv_s)
85
+
86
+ # define normalization layers
87
+ spade_config_str = norm_g.replace('spectral', '')
88
+ self.norm_0 = SPADE(spade_config_str, fin, semantic_nc)
89
+ self.norm_1 = SPADE(spade_config_str, fmiddle, semantic_nc)
90
+ if self.learned_shortcut:
91
+ self.norm_s = SPADE(spade_config_str, fin, semantic_nc)
92
+
93
+ # note the resnet block with SPADE also takes in |seg|,
94
+ # the semantic segmentation map as input
95
+ def forward(self, x, seg):
96
+ x_s = self.shortcut(x, seg)
97
+ dx = self.conv_0(self.act(self.norm_0(x, seg)))
98
+ dx = self.conv_1(self.act(self.norm_1(dx, seg)))
99
+ out = x_s + dx
100
+ return out
101
+
102
+ def shortcut(self, x, seg):
103
+ if self.learned_shortcut:
104
+ x_s = self.conv_s(self.norm_s(x, seg))
105
+ else:
106
+ x_s = x
107
+ return x_s
108
+
109
+ def act(self, x):
110
+ return F.leaky_relu(x, 2e-1)
111
+
112
+
113
+ class BaseNetwork(nn.Module):
114
+ """ A basis for hifacegan archs with custom initialization """
115
+
116
+ def init_weights(self, init_type='normal', gain=0.02):
117
+
118
+ def init_func(m):
119
+ classname = m.__class__.__name__
120
+ if classname.find('BatchNorm2d') != -1:
121
+ if hasattr(m, 'weight') and m.weight is not None:
122
+ init.normal_(m.weight.data, 1.0, gain)
123
+ if hasattr(m, 'bias') and m.bias is not None:
124
+ init.constant_(m.bias.data, 0.0)
125
+ elif hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
126
+ if init_type == 'normal':
127
+ init.normal_(m.weight.data, 0.0, gain)
128
+ elif init_type == 'xavier':
129
+ init.xavier_normal_(m.weight.data, gain=gain)
130
+ elif init_type == 'xavier_uniform':
131
+ init.xavier_uniform_(m.weight.data, gain=1.0)
132
+ elif init_type == 'kaiming':
133
+ init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
134
+ elif init_type == 'orthogonal':
135
+ init.orthogonal_(m.weight.data, gain=gain)
136
+ elif init_type == 'none': # uses pytorch's default init method
137
+ m.reset_parameters()
138
+ else:
139
+ raise NotImplementedError(f'initialization method [{init_type}] is not implemented')
140
+ if hasattr(m, 'bias') and m.bias is not None:
141
+ init.constant_(m.bias.data, 0.0)
142
+
143
+ self.apply(init_func)
144
+
145
+ # propagate to children
146
+ for m in self.children():
147
+ if hasattr(m, 'init_weights'):
148
+ m.init_weights(init_type, gain)
149
+
150
+ def forward(self, x):
151
+ pass
152
+
153
+
154
+ def lip2d(x, logit, kernel=3, stride=2, padding=1):
155
+ weight = logit.exp()
156
+ return F.avg_pool2d(x * weight, kernel, stride, padding) / F.avg_pool2d(weight, kernel, stride, padding)
157
+
158
+
159
+ class SoftGate(nn.Module):
160
+ COEFF = 12.0
161
+
162
+ def forward(self, x):
163
+ return torch.sigmoid(x).mul(self.COEFF)
164
+
165
+
166
+ class SimplifiedLIP(nn.Module):
167
+
168
+ def __init__(self, channels):
169
+ super(SimplifiedLIP, self).__init__()
170
+ self.logit = nn.Sequential(
171
+ nn.Conv2d(channels, channels, 3, padding=1, bias=False), nn.InstanceNorm2d(channels, affine=True),
172
+ SoftGate())
173
+
174
+ def init_layer(self):
175
+ self.logit[0].weight.data.fill_(0.0)
176
+
177
+ def forward(self, x):
178
+ frac = lip2d(x, self.logit(x))
179
+ return frac
180
+
181
+
182
+ class LIPEncoder(BaseNetwork):
183
+ """Local Importance-based Pooling (Ziteng Gao et.al.,ICCV 2019)"""
184
+
185
+ def __init__(self, input_nc, ngf, sw, sh, n_2xdown, norm_layer=nn.InstanceNorm2d):
186
+ super().__init__()
187
+ self.sw = sw
188
+ self.sh = sh
189
+ self.max_ratio = 16
190
+ # 20200310: Several Convolution (stride 1) + LIP blocks, 4 fold
191
+ kw = 3
192
+ pw = (kw - 1) // 2
193
+
194
+ model = [
195
+ nn.Conv2d(input_nc, ngf, kw, stride=1, padding=pw, bias=False),
196
+ norm_layer(ngf),
197
+ nn.ReLU(),
198
+ ]
199
+ cur_ratio = 1
200
+ for i in range(n_2xdown):
201
+ next_ratio = min(cur_ratio * 2, self.max_ratio)
202
+ model += [
203
+ SimplifiedLIP(ngf * cur_ratio),
204
+ nn.Conv2d(ngf * cur_ratio, ngf * next_ratio, kw, stride=1, padding=pw),
205
+ norm_layer(ngf * next_ratio),
206
+ ]
207
+ cur_ratio = next_ratio
208
+ if i < n_2xdown - 1:
209
+ model += [nn.ReLU(inplace=True)]
210
+
211
+ self.model = nn.Sequential(*model)
212
+
213
+ def forward(self, x):
214
+ return self.model(x)
215
+
216
+
217
+ def get_nonspade_norm_layer(norm_type='instance'):
218
+ # helper function to get # output channels of the previous layer
219
+ def get_out_channel(layer):
220
+ if hasattr(layer, 'out_channels'):
221
+ return getattr(layer, 'out_channels')
222
+ return layer.weight.size(0)
223
+
224
+ # this function will be returned
225
+ def add_norm_layer(layer):
226
+ nonlocal norm_type
227
+ if norm_type.startswith('spectral'):
228
+ layer = spectral_norm(layer)
229
+ subnorm_type = norm_type[len('spectral'):]
230
+
231
+ if subnorm_type == 'none' or len(subnorm_type) == 0:
232
+ return layer
233
+
234
+ # remove bias in the previous layer, which is meaningless
235
+ # since it has no effect after normalization
236
+ if getattr(layer, 'bias', None) is not None:
237
+ delattr(layer, 'bias')
238
+ layer.register_parameter('bias', None)
239
+
240
+ if subnorm_type == 'batch':
241
+ norm_layer = nn.BatchNorm2d(get_out_channel(layer), affine=True)
242
+ elif subnorm_type == 'sync_batch':
243
+ print('SyncBatchNorm is currently not supported under single-GPU mode, switch to "instance" instead')
244
+ # norm_layer = SynchronizedBatchNorm2d(
245
+ # get_out_channel(layer), affine=True)
246
+ norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False)
247
+ elif subnorm_type == 'instance':
248
+ norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False)
249
+ else:
250
+ raise ValueError(f'normalization layer {subnorm_type} is not recognized')
251
+
252
+ return nn.Sequential(layer, norm_layer)
253
+
254
+ print('This is a legacy from nvlabs/SPADE, and will be removed in future versions.')
255
+ return add_norm_layer
StableSR/basicsr/archs/inception.py ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified from https://github.com/mseitzer/pytorch-fid/blob/master/pytorch_fid/inception.py # noqa: E501
2
+ # For FID metric
3
+
4
+ import os
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ from torch.utils.model_zoo import load_url
9
+ from torchvision import models
10
+
11
+ # Inception weights ported to Pytorch from
12
+ # http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
13
+ FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' # noqa: E501
14
+ LOCAL_FID_WEIGHTS = 'experiments/pretrained_models/pt_inception-2015-12-05-6726825d.pth' # noqa: E501
15
+
16
+
17
+ class InceptionV3(nn.Module):
18
+ """Pretrained InceptionV3 network returning feature maps"""
19
+
20
+ # Index of default block of inception to return,
21
+ # corresponds to output of final average pooling
22
+ DEFAULT_BLOCK_INDEX = 3
23
+
24
+ # Maps feature dimensionality to their output blocks indices
25
+ BLOCK_INDEX_BY_DIM = {
26
+ 64: 0, # First max pooling features
27
+ 192: 1, # Second max pooling features
28
+ 768: 2, # Pre-aux classifier features
29
+ 2048: 3 # Final average pooling features
30
+ }
31
+
32
+ def __init__(self,
33
+ output_blocks=(DEFAULT_BLOCK_INDEX),
34
+ resize_input=True,
35
+ normalize_input=True,
36
+ requires_grad=False,
37
+ use_fid_inception=True):
38
+ """Build pretrained InceptionV3.
39
+
40
+ Args:
41
+ output_blocks (list[int]): Indices of blocks to return features of.
42
+ Possible values are:
43
+ - 0: corresponds to output of first max pooling
44
+ - 1: corresponds to output of second max pooling
45
+ - 2: corresponds to output which is fed to aux classifier
46
+ - 3: corresponds to output of final average pooling
47
+ resize_input (bool): If true, bilinearly resizes input to width and
48
+ height 299 before feeding input to model. As the network
49
+ without fully connected layers is fully convolutional, it
50
+ should be able to handle inputs of arbitrary size, so resizing
51
+ might not be strictly needed. Default: True.
52
+ normalize_input (bool): If true, scales the input from range (0, 1)
53
+ to the range the pretrained Inception network expects,
54
+ namely (-1, 1). Default: True.
55
+ requires_grad (bool): If true, parameters of the model require
56
+ gradients. Possibly useful for finetuning the network.
57
+ Default: False.
58
+ use_fid_inception (bool): If true, uses the pretrained Inception
59
+ model used in Tensorflow's FID implementation.
60
+ If false, uses the pretrained Inception model available in
61
+ torchvision. The FID Inception model has different weights
62
+ and a slightly different structure from torchvision's
63
+ Inception model. If you want to compute FID scores, you are
64
+ strongly advised to set this parameter to true to get
65
+ comparable results. Default: True.
66
+ """
67
+ super(InceptionV3, self).__init__()
68
+
69
+ self.resize_input = resize_input
70
+ self.normalize_input = normalize_input
71
+ self.output_blocks = sorted(output_blocks)
72
+ self.last_needed_block = max(output_blocks)
73
+
74
+ assert self.last_needed_block <= 3, ('Last possible output block index is 3')
75
+
76
+ self.blocks = nn.ModuleList()
77
+
78
+ if use_fid_inception:
79
+ inception = fid_inception_v3()
80
+ else:
81
+ try:
82
+ inception = models.inception_v3(pretrained=True, init_weights=False)
83
+ except TypeError:
84
+ # pytorch < 1.5 does not have init_weights for inception_v3
85
+ inception = models.inception_v3(pretrained=True)
86
+
87
+ # Block 0: input to maxpool1
88
+ block0 = [
89
+ inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3,
90
+ nn.MaxPool2d(kernel_size=3, stride=2)
91
+ ]
92
+ self.blocks.append(nn.Sequential(*block0))
93
+
94
+ # Block 1: maxpool1 to maxpool2
95
+ if self.last_needed_block >= 1:
96
+ block1 = [inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, stride=2)]
97
+ self.blocks.append(nn.Sequential(*block1))
98
+
99
+ # Block 2: maxpool2 to aux classifier
100
+ if self.last_needed_block >= 2:
101
+ block2 = [
102
+ inception.Mixed_5b,
103
+ inception.Mixed_5c,
104
+ inception.Mixed_5d,
105
+ inception.Mixed_6a,
106
+ inception.Mixed_6b,
107
+ inception.Mixed_6c,
108
+ inception.Mixed_6d,
109
+ inception.Mixed_6e,
110
+ ]
111
+ self.blocks.append(nn.Sequential(*block2))
112
+
113
+ # Block 3: aux classifier to final avgpool
114
+ if self.last_needed_block >= 3:
115
+ block3 = [
116
+ inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c,
117
+ nn.AdaptiveAvgPool2d(output_size=(1, 1))
118
+ ]
119
+ self.blocks.append(nn.Sequential(*block3))
120
+
121
+ for param in self.parameters():
122
+ param.requires_grad = requires_grad
123
+
124
+ def forward(self, x):
125
+ """Get Inception feature maps.
126
+
127
+ Args:
128
+ x (Tensor): Input tensor of shape (b, 3, h, w).
129
+ Values are expected to be in range (-1, 1). You can also input
130
+ (0, 1) with setting normalize_input = True.
131
+
132
+ Returns:
133
+ list[Tensor]: Corresponding to the selected output block, sorted
134
+ ascending by index.
135
+ """
136
+ output = []
137
+
138
+ if self.resize_input:
139
+ x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False)
140
+
141
+ if self.normalize_input:
142
+ x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
143
+
144
+ for idx, block in enumerate(self.blocks):
145
+ x = block(x)
146
+ if idx in self.output_blocks:
147
+ output.append(x)
148
+
149
+ if idx == self.last_needed_block:
150
+ break
151
+
152
+ return output
153
+
154
+
155
+ def fid_inception_v3():
156
+ """Build pretrained Inception model for FID computation.
157
+
158
+ The Inception model for FID computation uses a different set of weights
159
+ and has a slightly different structure than torchvision's Inception.
160
+
161
+ This method first constructs torchvision's Inception and then patches the
162
+ necessary parts that are different in the FID Inception model.
163
+ """
164
+ try:
165
+ inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False, init_weights=False)
166
+ except TypeError:
167
+ # pytorch < 1.5 does not have init_weights for inception_v3
168
+ inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False)
169
+
170
+ inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
171
+ inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
172
+ inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
173
+ inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
174
+ inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
175
+ inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
176
+ inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
177
+ inception.Mixed_7b = FIDInceptionE_1(1280)
178
+ inception.Mixed_7c = FIDInceptionE_2(2048)
179
+
180
+ if os.path.exists(LOCAL_FID_WEIGHTS):
181
+ state_dict = torch.load(LOCAL_FID_WEIGHTS, map_location=lambda storage, loc: storage)
182
+ else:
183
+ state_dict = load_url(FID_WEIGHTS_URL, progress=True)
184
+
185
+ inception.load_state_dict(state_dict)
186
+ return inception
187
+
188
+
189
+ class FIDInceptionA(models.inception.InceptionA):
190
+ """InceptionA block patched for FID computation"""
191
+
192
+ def __init__(self, in_channels, pool_features):
193
+ super(FIDInceptionA, self).__init__(in_channels, pool_features)
194
+
195
+ def forward(self, x):
196
+ branch1x1 = self.branch1x1(x)
197
+
198
+ branch5x5 = self.branch5x5_1(x)
199
+ branch5x5 = self.branch5x5_2(branch5x5)
200
+
201
+ branch3x3dbl = self.branch3x3dbl_1(x)
202
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
203
+ branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
204
+
205
+ # Patch: Tensorflow's average pool does not use the padded zero's in
206
+ # its average calculation
207
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
208
+ branch_pool = self.branch_pool(branch_pool)
209
+
210
+ outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
211
+ return torch.cat(outputs, 1)
212
+
213
+
214
+ class FIDInceptionC(models.inception.InceptionC):
215
+ """InceptionC block patched for FID computation"""
216
+
217
+ def __init__(self, in_channels, channels_7x7):
218
+ super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
219
+
220
+ def forward(self, x):
221
+ branch1x1 = self.branch1x1(x)
222
+
223
+ branch7x7 = self.branch7x7_1(x)
224
+ branch7x7 = self.branch7x7_2(branch7x7)
225
+ branch7x7 = self.branch7x7_3(branch7x7)
226
+
227
+ branch7x7dbl = self.branch7x7dbl_1(x)
228
+ branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
229
+ branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
230
+ branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
231
+ branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
232
+
233
+ # Patch: Tensorflow's average pool does not use the padded zero's in
234
+ # its average calculation
235
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
236
+ branch_pool = self.branch_pool(branch_pool)
237
+
238
+ outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
239
+ return torch.cat(outputs, 1)
240
+
241
+
242
+ class FIDInceptionE_1(models.inception.InceptionE):
243
+ """First InceptionE block patched for FID computation"""
244
+
245
+ def __init__(self, in_channels):
246
+ super(FIDInceptionE_1, self).__init__(in_channels)
247
+
248
+ def forward(self, x):
249
+ branch1x1 = self.branch1x1(x)
250
+
251
+ branch3x3 = self.branch3x3_1(x)
252
+ branch3x3 = [
253
+ self.branch3x3_2a(branch3x3),
254
+ self.branch3x3_2b(branch3x3),
255
+ ]
256
+ branch3x3 = torch.cat(branch3x3, 1)
257
+
258
+ branch3x3dbl = self.branch3x3dbl_1(x)
259
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
260
+ branch3x3dbl = [
261
+ self.branch3x3dbl_3a(branch3x3dbl),
262
+ self.branch3x3dbl_3b(branch3x3dbl),
263
+ ]
264
+ branch3x3dbl = torch.cat(branch3x3dbl, 1)
265
+
266
+ # Patch: Tensorflow's average pool does not use the padded zero's in
267
+ # its average calculation
268
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
269
+ branch_pool = self.branch_pool(branch_pool)
270
+
271
+ outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
272
+ return torch.cat(outputs, 1)
273
+
274
+
275
+ class FIDInceptionE_2(models.inception.InceptionE):
276
+ """Second InceptionE block patched for FID computation"""
277
+
278
+ def __init__(self, in_channels):
279
+ super(FIDInceptionE_2, self).__init__(in_channels)
280
+
281
+ def forward(self, x):
282
+ branch1x1 = self.branch1x1(x)
283
+
284
+ branch3x3 = self.branch3x3_1(x)
285
+ branch3x3 = [
286
+ self.branch3x3_2a(branch3x3),
287
+ self.branch3x3_2b(branch3x3),
288
+ ]
289
+ branch3x3 = torch.cat(branch3x3, 1)
290
+
291
+ branch3x3dbl = self.branch3x3dbl_1(x)
292
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
293
+ branch3x3dbl = [
294
+ self.branch3x3dbl_3a(branch3x3dbl),
295
+ self.branch3x3dbl_3b(branch3x3dbl),
296
+ ]
297
+ branch3x3dbl = torch.cat(branch3x3dbl, 1)
298
+
299
+ # Patch: The FID Inception model uses max pooling instead of average
300
+ # pooling. This is likely an error in this specific Inception
301
+ # implementation, as other Inception models use average pooling here
302
+ # (which matches the description in the paper).
303
+ branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
304
+ branch_pool = self.branch_pool(branch_pool)
305
+
306
+ outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
307
+ return torch.cat(outputs, 1)
StableSR/basicsr/archs/rcan_arch.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+
4
+ from basicsr.utils.registry import ARCH_REGISTRY
5
+ from .arch_util import Upsample, make_layer
6
+
7
+
8
+ class ChannelAttention(nn.Module):
9
+ """Channel attention used in RCAN.
10
+
11
+ Args:
12
+ num_feat (int): Channel number of intermediate features.
13
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
14
+ """
15
+
16
+ def __init__(self, num_feat, squeeze_factor=16):
17
+ super(ChannelAttention, self).__init__()
18
+ self.attention = nn.Sequential(
19
+ nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
20
+ nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid())
21
+
22
+ def forward(self, x):
23
+ y = self.attention(x)
24
+ return x * y
25
+
26
+
27
+ class RCAB(nn.Module):
28
+ """Residual Channel Attention Block (RCAB) used in RCAN.
29
+
30
+ Args:
31
+ num_feat (int): Channel number of intermediate features.
32
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
33
+ res_scale (float): Scale the residual. Default: 1.
34
+ """
35
+
36
+ def __init__(self, num_feat, squeeze_factor=16, res_scale=1):
37
+ super(RCAB, self).__init__()
38
+ self.res_scale = res_scale
39
+
40
+ self.rcab = nn.Sequential(
41
+ nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True), nn.Conv2d(num_feat, num_feat, 3, 1, 1),
42
+ ChannelAttention(num_feat, squeeze_factor))
43
+
44
+ def forward(self, x):
45
+ res = self.rcab(x) * self.res_scale
46
+ return res + x
47
+
48
+
49
+ class ResidualGroup(nn.Module):
50
+ """Residual Group of RCAB.
51
+
52
+ Args:
53
+ num_feat (int): Channel number of intermediate features.
54
+ num_block (int): Block number in the body network.
55
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
56
+ res_scale (float): Scale the residual. Default: 1.
57
+ """
58
+
59
+ def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1):
60
+ super(ResidualGroup, self).__init__()
61
+
62
+ self.residual_group = make_layer(
63
+ RCAB, num_block, num_feat=num_feat, squeeze_factor=squeeze_factor, res_scale=res_scale)
64
+ self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
65
+
66
+ def forward(self, x):
67
+ res = self.conv(self.residual_group(x))
68
+ return res + x
69
+
70
+
71
+ @ARCH_REGISTRY.register()
72
+ class RCAN(nn.Module):
73
+ """Residual Channel Attention Networks.
74
+
75
+ ``Paper: Image Super-Resolution Using Very Deep Residual Channel Attention Networks``
76
+
77
+ Reference: https://github.com/yulunzhang/RCAN
78
+
79
+ Args:
80
+ num_in_ch (int): Channel number of inputs.
81
+ num_out_ch (int): Channel number of outputs.
82
+ num_feat (int): Channel number of intermediate features.
83
+ Default: 64.
84
+ num_group (int): Number of ResidualGroup. Default: 10.
85
+ num_block (int): Number of RCAB in ResidualGroup. Default: 16.
86
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
87
+ upscale (int): Upsampling factor. Support 2^n and 3.
88
+ Default: 4.
89
+ res_scale (float): Used to scale the residual in residual block.
90
+ Default: 1.
91
+ img_range (float): Image range. Default: 255.
92
+ rgb_mean (tuple[float]): Image mean in RGB orders.
93
+ Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
94
+ """
95
+
96
+ def __init__(self,
97
+ num_in_ch,
98
+ num_out_ch,
99
+ num_feat=64,
100
+ num_group=10,
101
+ num_block=16,
102
+ squeeze_factor=16,
103
+ upscale=4,
104
+ res_scale=1,
105
+ img_range=255.,
106
+ rgb_mean=(0.4488, 0.4371, 0.4040)):
107
+ super(RCAN, self).__init__()
108
+
109
+ self.img_range = img_range
110
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
111
+
112
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
113
+ self.body = make_layer(
114
+ ResidualGroup,
115
+ num_group,
116
+ num_feat=num_feat,
117
+ num_block=num_block,
118
+ squeeze_factor=squeeze_factor,
119
+ res_scale=res_scale)
120
+ self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
121
+ self.upsample = Upsample(upscale, num_feat)
122
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
123
+
124
+ def forward(self, x):
125
+ self.mean = self.mean.type_as(x)
126
+
127
+ x = (x - self.mean) * self.img_range
128
+ x = self.conv_first(x)
129
+ res = self.conv_after_body(self.body(x))
130
+ res += x
131
+
132
+ x = self.conv_last(self.upsample(res))
133
+ x = x / self.img_range + self.mean
134
+
135
+ return x
StableSR/basicsr/archs/ridnet_arch.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from basicsr.utils.registry import ARCH_REGISTRY
5
+ from .arch_util import ResidualBlockNoBN, make_layer
6
+
7
+
8
+ class MeanShift(nn.Conv2d):
9
+ """ Data normalization with mean and std.
10
+
11
+ Args:
12
+ rgb_range (int): Maximum value of RGB.
13
+ rgb_mean (list[float]): Mean for RGB channels.
14
+ rgb_std (list[float]): Std for RGB channels.
15
+ sign (int): For subtraction, sign is -1, for addition, sign is 1.
16
+ Default: -1.
17
+ requires_grad (bool): Whether to update the self.weight and self.bias.
18
+ Default: True.
19
+ """
20
+
21
+ def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1, requires_grad=True):
22
+ super(MeanShift, self).__init__(3, 3, kernel_size=1)
23
+ std = torch.Tensor(rgb_std)
24
+ self.weight.data = torch.eye(3).view(3, 3, 1, 1)
25
+ self.weight.data.div_(std.view(3, 1, 1, 1))
26
+ self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
27
+ self.bias.data.div_(std)
28
+ self.requires_grad = requires_grad
29
+
30
+
31
+ class EResidualBlockNoBN(nn.Module):
32
+ """Enhanced Residual block without BN.
33
+
34
+ There are three convolution layers in residual branch.
35
+ """
36
+
37
+ def __init__(self, in_channels, out_channels):
38
+ super(EResidualBlockNoBN, self).__init__()
39
+
40
+ self.body = nn.Sequential(
41
+ nn.Conv2d(in_channels, out_channels, 3, 1, 1),
42
+ nn.ReLU(inplace=True),
43
+ nn.Conv2d(out_channels, out_channels, 3, 1, 1),
44
+ nn.ReLU(inplace=True),
45
+ nn.Conv2d(out_channels, out_channels, 1, 1, 0),
46
+ )
47
+ self.relu = nn.ReLU(inplace=True)
48
+
49
+ def forward(self, x):
50
+ out = self.body(x)
51
+ out = self.relu(out + x)
52
+ return out
53
+
54
+
55
+ class MergeRun(nn.Module):
56
+ """ Merge-and-run unit.
57
+
58
+ This unit contains two branches with different dilated convolutions,
59
+ followed by a convolution to process the concatenated features.
60
+
61
+ Paper: Real Image Denoising with Feature Attention
62
+ Ref git repo: https://github.com/saeed-anwar/RIDNet
63
+ """
64
+
65
+ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
66
+ super(MergeRun, self).__init__()
67
+
68
+ self.dilation1 = nn.Sequential(
69
+ nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True),
70
+ nn.Conv2d(out_channels, out_channels, kernel_size, stride, 2, 2), nn.ReLU(inplace=True))
71
+ self.dilation2 = nn.Sequential(
72
+ nn.Conv2d(in_channels, out_channels, kernel_size, stride, 3, 3), nn.ReLU(inplace=True),
73
+ nn.Conv2d(out_channels, out_channels, kernel_size, stride, 4, 4), nn.ReLU(inplace=True))
74
+
75
+ self.aggregation = nn.Sequential(
76
+ nn.Conv2d(out_channels * 2, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True))
77
+
78
+ def forward(self, x):
79
+ dilation1 = self.dilation1(x)
80
+ dilation2 = self.dilation2(x)
81
+ out = torch.cat([dilation1, dilation2], dim=1)
82
+ out = self.aggregation(out)
83
+ out = out + x
84
+ return out
85
+
86
+
87
+ class ChannelAttention(nn.Module):
88
+ """Channel attention.
89
+
90
+ Args:
91
+ num_feat (int): Channel number of intermediate features.
92
+ squeeze_factor (int): Channel squeeze factor. Default:
93
+ """
94
+
95
+ def __init__(self, mid_channels, squeeze_factor=16):
96
+ super(ChannelAttention, self).__init__()
97
+ self.attention = nn.Sequential(
98
+ nn.AdaptiveAvgPool2d(1), nn.Conv2d(mid_channels, mid_channels // squeeze_factor, 1, padding=0),
99
+ nn.ReLU(inplace=True), nn.Conv2d(mid_channels // squeeze_factor, mid_channels, 1, padding=0), nn.Sigmoid())
100
+
101
+ def forward(self, x):
102
+ y = self.attention(x)
103
+ return x * y
104
+
105
+
106
+ class EAM(nn.Module):
107
+ """Enhancement attention modules (EAM) in RIDNet.
108
+
109
+ This module contains a merge-and-run unit, a residual block,
110
+ an enhanced residual block and a feature attention unit.
111
+
112
+ Attributes:
113
+ merge: The merge-and-run unit.
114
+ block1: The residual block.
115
+ block2: The enhanced residual block.
116
+ ca: The feature/channel attention unit.
117
+ """
118
+
119
+ def __init__(self, in_channels, mid_channels, out_channels):
120
+ super(EAM, self).__init__()
121
+
122
+ self.merge = MergeRun(in_channels, mid_channels)
123
+ self.block1 = ResidualBlockNoBN(mid_channels)
124
+ self.block2 = EResidualBlockNoBN(mid_channels, out_channels)
125
+ self.ca = ChannelAttention(out_channels)
126
+ # The residual block in the paper contains a relu after addition.
127
+ self.relu = nn.ReLU(inplace=True)
128
+
129
+ def forward(self, x):
130
+ out = self.merge(x)
131
+ out = self.relu(self.block1(out))
132
+ out = self.block2(out)
133
+ out = self.ca(out)
134
+ return out
135
+
136
+
137
+ @ARCH_REGISTRY.register()
138
+ class RIDNet(nn.Module):
139
+ """RIDNet: Real Image Denoising with Feature Attention.
140
+
141
+ Ref git repo: https://github.com/saeed-anwar/RIDNet
142
+
143
+ Args:
144
+ in_channels (int): Channel number of inputs.
145
+ mid_channels (int): Channel number of EAM modules.
146
+ Default: 64.
147
+ out_channels (int): Channel number of outputs.
148
+ num_block (int): Number of EAM. Default: 4.
149
+ img_range (float): Image range. Default: 255.
150
+ rgb_mean (tuple[float]): Image mean in RGB orders.
151
+ Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
152
+ """
153
+
154
+ def __init__(self,
155
+ in_channels,
156
+ mid_channels,
157
+ out_channels,
158
+ num_block=4,
159
+ img_range=255.,
160
+ rgb_mean=(0.4488, 0.4371, 0.4040),
161
+ rgb_std=(1.0, 1.0, 1.0)):
162
+ super(RIDNet, self).__init__()
163
+
164
+ self.sub_mean = MeanShift(img_range, rgb_mean, rgb_std)
165
+ self.add_mean = MeanShift(img_range, rgb_mean, rgb_std, 1)
166
+
167
+ self.head = nn.Conv2d(in_channels, mid_channels, 3, 1, 1)
168
+ self.body = make_layer(
169
+ EAM, num_block, in_channels=mid_channels, mid_channels=mid_channels, out_channels=mid_channels)
170
+ self.tail = nn.Conv2d(mid_channels, out_channels, 3, 1, 1)
171
+
172
+ self.relu = nn.ReLU(inplace=True)
173
+
174
+ def forward(self, x):
175
+ res = self.sub_mean(x)
176
+ res = self.tail(self.body(self.relu(self.head(res))))
177
+ res = self.add_mean(res)
178
+
179
+ out = x + res
180
+ return out
StableSR/basicsr/archs/rrdbnet_arch.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+ from .arch_util import default_init_weights, make_layer, pixel_unshuffle
7
+
8
+
9
+ class ResidualDenseBlock(nn.Module):
10
+ """Residual Dense Block.
11
+
12
+ Used in RRDB block in ESRGAN.
13
+
14
+ Args:
15
+ num_feat (int): Channel number of intermediate features.
16
+ num_grow_ch (int): Channels for each growth.
17
+ """
18
+
19
+ def __init__(self, num_feat=64, num_grow_ch=32):
20
+ super(ResidualDenseBlock, self).__init__()
21
+ self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
22
+ self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
23
+ self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
24
+ self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
25
+ self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
26
+
27
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
28
+
29
+ # initialization
30
+ default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
31
+
32
+ def forward(self, x):
33
+ x1 = self.lrelu(self.conv1(x))
34
+ x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
35
+ x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
36
+ x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
37
+ x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
38
+ # Empirically, we use 0.2 to scale the residual for better performance
39
+ return x5 * 0.2 + x
40
+
41
+
42
+ class RRDB(nn.Module):
43
+ """Residual in Residual Dense Block.
44
+
45
+ Used in RRDB-Net in ESRGAN.
46
+
47
+ Args:
48
+ num_feat (int): Channel number of intermediate features.
49
+ num_grow_ch (int): Channels for each growth.
50
+ """
51
+
52
+ def __init__(self, num_feat, num_grow_ch=32):
53
+ super(RRDB, self).__init__()
54
+ self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
55
+ self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
56
+ self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
57
+
58
+ def forward(self, x):
59
+ out = self.rdb1(x)
60
+ out = self.rdb2(out)
61
+ out = self.rdb3(out)
62
+ # Empirically, we use 0.2 to scale the residual for better performance
63
+ return out * 0.2 + x
64
+
65
+
66
+ @ARCH_REGISTRY.register()
67
+ class RRDBNet(nn.Module):
68
+ """Networks consisting of Residual in Residual Dense Block, which is used
69
+ in ESRGAN.
70
+
71
+ ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
72
+
73
+ We extend ESRGAN for scale x2 and scale x1.
74
+ Note: This is one option for scale 1, scale 2 in RRDBNet.
75
+ We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
76
+ and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
77
+
78
+ Args:
79
+ num_in_ch (int): Channel number of inputs.
80
+ num_out_ch (int): Channel number of outputs.
81
+ num_feat (int): Channel number of intermediate features.
82
+ Default: 64
83
+ num_block (int): Block number in the trunk network. Defaults: 23
84
+ num_grow_ch (int): Channels for each growth. Default: 32.
85
+ """
86
+
87
+ def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
88
+ super(RRDBNet, self).__init__()
89
+ self.scale = scale
90
+ if scale == 2:
91
+ num_in_ch = num_in_ch * 4
92
+ elif scale == 1:
93
+ num_in_ch = num_in_ch * 16
94
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
95
+ self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
96
+ self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
97
+ # upsample
98
+ self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
99
+ self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
100
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
101
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
102
+
103
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
104
+
105
+ def forward(self, x):
106
+ if self.scale == 2:
107
+ feat = pixel_unshuffle(x, scale=2)
108
+ elif self.scale == 1:
109
+ feat = pixel_unshuffle(x, scale=4)
110
+ else:
111
+ feat = x
112
+ feat = self.conv_first(feat)
113
+ body_feat = self.conv_body(self.body(feat))
114
+ feat = feat + body_feat
115
+ # upsample
116
+ feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
117
+ feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
118
+ out = self.conv_last(self.lrelu(self.conv_hr(feat)))
119
+ return out
StableSR/basicsr/archs/spynet_arch.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import nn as nn
4
+ from torch.nn import functional as F
5
+
6
+ from basicsr.utils.registry import ARCH_REGISTRY
7
+ from .arch_util import flow_warp
8
+
9
+
10
+ class BasicModule(nn.Module):
11
+ """Basic Module for SpyNet.
12
+ """
13
+
14
+ def __init__(self):
15
+ super(BasicModule, self).__init__()
16
+
17
+ self.basic_module = nn.Sequential(
18
+ nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
19
+ nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
20
+ nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
21
+ nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=False),
22
+ nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3))
23
+
24
+ def forward(self, tensor_input):
25
+ return self.basic_module(tensor_input)
26
+
27
+
28
+ @ARCH_REGISTRY.register()
29
+ class SpyNet(nn.Module):
30
+ """SpyNet architecture.
31
+
32
+ Args:
33
+ load_path (str): path for pretrained SpyNet. Default: None.
34
+ """
35
+
36
+ def __init__(self, load_path=None):
37
+ super(SpyNet, self).__init__()
38
+ self.basic_module = nn.ModuleList([BasicModule() for _ in range(6)])
39
+ if load_path:
40
+ self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])
41
+
42
+ self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
43
+ self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
44
+
45
+ def preprocess(self, tensor_input):
46
+ tensor_output = (tensor_input - self.mean) / self.std
47
+ return tensor_output
48
+
49
+ def process(self, ref, supp):
50
+ flow = []
51
+
52
+ ref = [self.preprocess(ref)]
53
+ supp = [self.preprocess(supp)]
54
+
55
+ for level in range(5):
56
+ ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False))
57
+ supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False))
58
+
59
+ flow = ref[0].new_zeros(
60
+ [ref[0].size(0), 2,
61
+ int(math.floor(ref[0].size(2) / 2.0)),
62
+ int(math.floor(ref[0].size(3) / 2.0))])
63
+
64
+ for level in range(len(ref)):
65
+ upsampled_flow = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0
66
+
67
+ if upsampled_flow.size(2) != ref[level].size(2):
68
+ upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 0, 0, 1], mode='replicate')
69
+ if upsampled_flow.size(3) != ref[level].size(3):
70
+ upsampled_flow = F.pad(input=upsampled_flow, pad=[0, 1, 0, 0], mode='replicate')
71
+
72
+ flow = self.basic_module[level](torch.cat([
73
+ ref[level],
74
+ flow_warp(
75
+ supp[level], upsampled_flow.permute(0, 2, 3, 1), interp_mode='bilinear', padding_mode='border'),
76
+ upsampled_flow
77
+ ], 1)) + upsampled_flow
78
+
79
+ return flow
80
+
81
+ def forward(self, ref, supp):
82
+ assert ref.size() == supp.size()
83
+
84
+ h, w = ref.size(2), ref.size(3)
85
+ w_floor = math.floor(math.ceil(w / 32.0) * 32.0)
86
+ h_floor = math.floor(math.ceil(h / 32.0) * 32.0)
87
+
88
+ ref = F.interpolate(input=ref, size=(h_floor, w_floor), mode='bilinear', align_corners=False)
89
+ supp = F.interpolate(input=supp, size=(h_floor, w_floor), mode='bilinear', align_corners=False)
90
+
91
+ flow = F.interpolate(input=self.process(ref, supp), size=(h, w), mode='bilinear', align_corners=False)
92
+
93
+ flow[:, 0, :, :] *= float(w) / float(w_floor)
94
+ flow[:, 1, :, :] *= float(h) / float(h_floor)
95
+
96
+ return flow
StableSR/basicsr/archs/srresnet_arch.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn as nn
2
+ from torch.nn import functional as F
3
+
4
+ from basicsr.utils.registry import ARCH_REGISTRY
5
+ from .arch_util import ResidualBlockNoBN, default_init_weights, make_layer
6
+
7
+
8
+ @ARCH_REGISTRY.register()
9
+ class MSRResNet(nn.Module):
10
+ """Modified SRResNet.
11
+
12
+ A compacted version modified from SRResNet in
13
+ "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"
14
+ It uses residual blocks without BN, similar to EDSR.
15
+ Currently, it supports x2, x3 and x4 upsampling scale factor.
16
+
17
+ Args:
18
+ num_in_ch (int): Channel number of inputs. Default: 3.
19
+ num_out_ch (int): Channel number of outputs. Default: 3.
20
+ num_feat (int): Channel number of intermediate features. Default: 64.
21
+ num_block (int): Block number in the body network. Default: 16.
22
+ upscale (int): Upsampling factor. Support x2, x3 and x4. Default: 4.
23
+ """
24
+
25
+ def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=16, upscale=4):
26
+ super(MSRResNet, self).__init__()
27
+ self.upscale = upscale
28
+
29
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
30
+ self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat)
31
+
32
+ # upsampling
33
+ if self.upscale in [2, 3]:
34
+ self.upconv1 = nn.Conv2d(num_feat, num_feat * self.upscale * self.upscale, 3, 1, 1)
35
+ self.pixel_shuffle = nn.PixelShuffle(self.upscale)
36
+ elif self.upscale == 4:
37
+ self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
38
+ self.upconv2 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1)
39
+ self.pixel_shuffle = nn.PixelShuffle(2)
40
+
41
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
42
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
43
+
44
+ # activation function
45
+ self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
46
+
47
+ # initialization
48
+ default_init_weights([self.conv_first, self.upconv1, self.conv_hr, self.conv_last], 0.1)
49
+ if self.upscale == 4:
50
+ default_init_weights(self.upconv2, 0.1)
51
+
52
+ def forward(self, x):
53
+ feat = self.lrelu(self.conv_first(x))
54
+ out = self.body(feat)
55
+
56
+ if self.upscale == 4:
57
+ out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
58
+ out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
59
+ elif self.upscale in [2, 3]:
60
+ out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
61
+
62
+ out = self.conv_last(self.lrelu(self.conv_hr(out)))
63
+ base = F.interpolate(x, scale_factor=self.upscale, mode='bilinear', align_corners=False)
64
+ out += base
65
+ return out
StableSR/basicsr/archs/srvgg_arch.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn as nn
2
+ from torch.nn import functional as F
3
+
4
+ from basicsr.utils.registry import ARCH_REGISTRY
5
+
6
+
7
+ @ARCH_REGISTRY.register(suffix='basicsr')
8
+ class SRVGGNetCompact(nn.Module):
9
+ """A compact VGG-style network structure for super-resolution.
10
+
11
+ It is a compact network structure, which performs upsampling in the last layer and no convolution is
12
+ conducted on the HR feature space.
13
+
14
+ Args:
15
+ num_in_ch (int): Channel number of inputs. Default: 3.
16
+ num_out_ch (int): Channel number of outputs. Default: 3.
17
+ num_feat (int): Channel number of intermediate features. Default: 64.
18
+ num_conv (int): Number of convolution layers in the body network. Default: 16.
19
+ upscale (int): Upsampling factor. Default: 4.
20
+ act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
21
+ """
22
+
23
+ def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
24
+ super(SRVGGNetCompact, self).__init__()
25
+ self.num_in_ch = num_in_ch
26
+ self.num_out_ch = num_out_ch
27
+ self.num_feat = num_feat
28
+ self.num_conv = num_conv
29
+ self.upscale = upscale
30
+ self.act_type = act_type
31
+
32
+ self.body = nn.ModuleList()
33
+ # the first conv
34
+ self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
35
+ # the first activation
36
+ if act_type == 'relu':
37
+ activation = nn.ReLU(inplace=True)
38
+ elif act_type == 'prelu':
39
+ activation = nn.PReLU(num_parameters=num_feat)
40
+ elif act_type == 'leakyrelu':
41
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
42
+ self.body.append(activation)
43
+
44
+ # the body structure
45
+ for _ in range(num_conv):
46
+ self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
47
+ # activation
48
+ if act_type == 'relu':
49
+ activation = nn.ReLU(inplace=True)
50
+ elif act_type == 'prelu':
51
+ activation = nn.PReLU(num_parameters=num_feat)
52
+ elif act_type == 'leakyrelu':
53
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
54
+ self.body.append(activation)
55
+
56
+ # the last conv
57
+ self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
58
+ # upsample
59
+ self.upsampler = nn.PixelShuffle(upscale)
60
+
61
+ def forward(self, x):
62
+ out = x
63
+ for i in range(0, len(self.body)):
64
+ out = self.body[i](out)
65
+
66
+ out = self.upsampler(out)
67
+ # add the nearest upsampled image, so that the network learns the residual
68
+ base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
69
+ out += base
70
+ return out
StableSR/basicsr/archs/stylegan2_arch.py ADDED
@@ -0,0 +1,799 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ from basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu
8
+ from basicsr.ops.upfirdn2d import upfirdn2d
9
+ from basicsr.utils.registry import ARCH_REGISTRY
10
+
11
+
12
+ class NormStyleCode(nn.Module):
13
+
14
+ def forward(self, x):
15
+ """Normalize the style codes.
16
+
17
+ Args:
18
+ x (Tensor): Style codes with shape (b, c).
19
+
20
+ Returns:
21
+ Tensor: Normalized tensor.
22
+ """
23
+ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
24
+
25
+
26
+ def make_resample_kernel(k):
27
+ """Make resampling kernel for UpFirDn.
28
+
29
+ Args:
30
+ k (list[int]): A list indicating the 1D resample kernel magnitude.
31
+
32
+ Returns:
33
+ Tensor: 2D resampled kernel.
34
+ """
35
+ k = torch.tensor(k, dtype=torch.float32)
36
+ if k.ndim == 1:
37
+ k = k[None, :] * k[:, None] # to 2D kernel, outer product
38
+ # normalize
39
+ k /= k.sum()
40
+ return k
41
+
42
+
43
+ class UpFirDnUpsample(nn.Module):
44
+ """Upsample, FIR filter, and downsample (upsampole version).
45
+
46
+ References:
47
+ 1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501
48
+ 2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501
49
+
50
+ Args:
51
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
52
+ magnitude.
53
+ factor (int): Upsampling scale factor. Default: 2.
54
+ """
55
+
56
+ def __init__(self, resample_kernel, factor=2):
57
+ super(UpFirDnUpsample, self).__init__()
58
+ self.kernel = make_resample_kernel(resample_kernel) * (factor**2)
59
+ self.factor = factor
60
+
61
+ pad = self.kernel.shape[0] - factor
62
+ self.pad = ((pad + 1) // 2 + factor - 1, pad // 2)
63
+
64
+ def forward(self, x):
65
+ out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad)
66
+ return out
67
+
68
+ def __repr__(self):
69
+ return (f'{self.__class__.__name__}(factor={self.factor})')
70
+
71
+
72
+ class UpFirDnDownsample(nn.Module):
73
+ """Upsample, FIR filter, and downsample (downsampole version).
74
+
75
+ Args:
76
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
77
+ magnitude.
78
+ factor (int): Downsampling scale factor. Default: 2.
79
+ """
80
+
81
+ def __init__(self, resample_kernel, factor=2):
82
+ super(UpFirDnDownsample, self).__init__()
83
+ self.kernel = make_resample_kernel(resample_kernel)
84
+ self.factor = factor
85
+
86
+ pad = self.kernel.shape[0] - factor
87
+ self.pad = ((pad + 1) // 2, pad // 2)
88
+
89
+ def forward(self, x):
90
+ out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=self.factor, pad=self.pad)
91
+ return out
92
+
93
+ def __repr__(self):
94
+ return (f'{self.__class__.__name__}(factor={self.factor})')
95
+
96
+
97
+ class UpFirDnSmooth(nn.Module):
98
+ """Upsample, FIR filter, and downsample (smooth version).
99
+
100
+ Args:
101
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
102
+ magnitude.
103
+ upsample_factor (int): Upsampling scale factor. Default: 1.
104
+ downsample_factor (int): Downsampling scale factor. Default: 1.
105
+ kernel_size (int): Kernel size: Default: 1.
106
+ """
107
+
108
+ def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1):
109
+ super(UpFirDnSmooth, self).__init__()
110
+ self.upsample_factor = upsample_factor
111
+ self.downsample_factor = downsample_factor
112
+ self.kernel = make_resample_kernel(resample_kernel)
113
+ if upsample_factor > 1:
114
+ self.kernel = self.kernel * (upsample_factor**2)
115
+
116
+ if upsample_factor > 1:
117
+ pad = (self.kernel.shape[0] - upsample_factor) - (kernel_size - 1)
118
+ self.pad = ((pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1)
119
+ elif downsample_factor > 1:
120
+ pad = (self.kernel.shape[0] - downsample_factor) + (kernel_size - 1)
121
+ self.pad = ((pad + 1) // 2, pad // 2)
122
+ else:
123
+ raise NotImplementedError
124
+
125
+ def forward(self, x):
126
+ out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
127
+ return out
128
+
129
+ def __repr__(self):
130
+ return (f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}'
131
+ f', downsample_factor={self.downsample_factor})')
132
+
133
+
134
+ class EqualLinear(nn.Module):
135
+ """Equalized Linear as StyleGAN2.
136
+
137
+ Args:
138
+ in_channels (int): Size of each sample.
139
+ out_channels (int): Size of each output sample.
140
+ bias (bool): If set to ``False``, the layer will not learn an additive
141
+ bias. Default: ``True``.
142
+ bias_init_val (float): Bias initialized value. Default: 0.
143
+ lr_mul (float): Learning rate multiplier. Default: 1.
144
+ activation (None | str): The activation after ``linear`` operation.
145
+ Supported: 'fused_lrelu', None. Default: None.
146
+ """
147
+
148
+ def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None):
149
+ super(EqualLinear, self).__init__()
150
+ self.in_channels = in_channels
151
+ self.out_channels = out_channels
152
+ self.lr_mul = lr_mul
153
+ self.activation = activation
154
+ if self.activation not in ['fused_lrelu', None]:
155
+ raise ValueError(f'Wrong activation value in EqualLinear: {activation}'
156
+ "Supported ones are: ['fused_lrelu', None].")
157
+ self.scale = (1 / math.sqrt(in_channels)) * lr_mul
158
+
159
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
160
+ if bias:
161
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
162
+ else:
163
+ self.register_parameter('bias', None)
164
+
165
+ def forward(self, x):
166
+ if self.bias is None:
167
+ bias = None
168
+ else:
169
+ bias = self.bias * self.lr_mul
170
+ if self.activation == 'fused_lrelu':
171
+ out = F.linear(x, self.weight * self.scale)
172
+ out = fused_leaky_relu(out, bias)
173
+ else:
174
+ out = F.linear(x, self.weight * self.scale, bias=bias)
175
+ return out
176
+
177
+ def __repr__(self):
178
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
179
+ f'out_channels={self.out_channels}, bias={self.bias is not None})')
180
+
181
+
182
+ class ModulatedConv2d(nn.Module):
183
+ """Modulated Conv2d used in StyleGAN2.
184
+
185
+ There is no bias in ModulatedConv2d.
186
+
187
+ Args:
188
+ in_channels (int): Channel number of the input.
189
+ out_channels (int): Channel number of the output.
190
+ kernel_size (int): Size of the convolving kernel.
191
+ num_style_feat (int): Channel number of style features.
192
+ demodulate (bool): Whether to demodulate in the conv layer.
193
+ Default: True.
194
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
195
+ Default: None.
196
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
197
+ magnitude. Default: (1, 3, 3, 1).
198
+ eps (float): A value added to the denominator for numerical stability.
199
+ Default: 1e-8.
200
+ """
201
+
202
+ def __init__(self,
203
+ in_channels,
204
+ out_channels,
205
+ kernel_size,
206
+ num_style_feat,
207
+ demodulate=True,
208
+ sample_mode=None,
209
+ resample_kernel=(1, 3, 3, 1),
210
+ eps=1e-8):
211
+ super(ModulatedConv2d, self).__init__()
212
+ self.in_channels = in_channels
213
+ self.out_channels = out_channels
214
+ self.kernel_size = kernel_size
215
+ self.demodulate = demodulate
216
+ self.sample_mode = sample_mode
217
+ self.eps = eps
218
+
219
+ if self.sample_mode == 'upsample':
220
+ self.smooth = UpFirDnSmooth(
221
+ resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size)
222
+ elif self.sample_mode == 'downsample':
223
+ self.smooth = UpFirDnSmooth(
224
+ resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size)
225
+ elif self.sample_mode is None:
226
+ pass
227
+ else:
228
+ raise ValueError(f'Wrong sample mode {self.sample_mode}, '
229
+ "supported ones are ['upsample', 'downsample', None].")
230
+
231
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
232
+ # modulation inside each modulated conv
233
+ self.modulation = EqualLinear(
234
+ num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None)
235
+
236
+ self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size))
237
+ self.padding = kernel_size // 2
238
+
239
+ def forward(self, x, style):
240
+ """Forward function.
241
+
242
+ Args:
243
+ x (Tensor): Tensor with shape (b, c, h, w).
244
+ style (Tensor): Tensor with shape (b, num_style_feat).
245
+
246
+ Returns:
247
+ Tensor: Modulated tensor after convolution.
248
+ """
249
+ b, c, h, w = x.shape # c = c_in
250
+ # weight modulation
251
+ style = self.modulation(style).view(b, 1, c, 1, 1)
252
+ # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
253
+ weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
254
+
255
+ if self.demodulate:
256
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
257
+ weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
258
+
259
+ weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
260
+
261
+ if self.sample_mode == 'upsample':
262
+ x = x.view(1, b * c, h, w)
263
+ weight = weight.view(b, self.out_channels, c, self.kernel_size, self.kernel_size)
264
+ weight = weight.transpose(1, 2).reshape(b * c, self.out_channels, self.kernel_size, self.kernel_size)
265
+ out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
266
+ out = out.view(b, self.out_channels, *out.shape[2:4])
267
+ out = self.smooth(out)
268
+ elif self.sample_mode == 'downsample':
269
+ x = self.smooth(x)
270
+ x = x.view(1, b * c, *x.shape[2:4])
271
+ out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
272
+ out = out.view(b, self.out_channels, *out.shape[2:4])
273
+ else:
274
+ x = x.view(1, b * c, h, w)
275
+ # weight: (b*c_out, c_in, k, k), groups=b
276
+ out = F.conv2d(x, weight, padding=self.padding, groups=b)
277
+ out = out.view(b, self.out_channels, *out.shape[2:4])
278
+
279
+ return out
280
+
281
+ def __repr__(self):
282
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
283
+ f'out_channels={self.out_channels}, '
284
+ f'kernel_size={self.kernel_size}, '
285
+ f'demodulate={self.demodulate}, sample_mode={self.sample_mode})')
286
+
287
+
288
+ class StyleConv(nn.Module):
289
+ """Style conv.
290
+
291
+ Args:
292
+ in_channels (int): Channel number of the input.
293
+ out_channels (int): Channel number of the output.
294
+ kernel_size (int): Size of the convolving kernel.
295
+ num_style_feat (int): Channel number of style features.
296
+ demodulate (bool): Whether demodulate in the conv layer. Default: True.
297
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
298
+ Default: None.
299
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
300
+ magnitude. Default: (1, 3, 3, 1).
301
+ """
302
+
303
+ def __init__(self,
304
+ in_channels,
305
+ out_channels,
306
+ kernel_size,
307
+ num_style_feat,
308
+ demodulate=True,
309
+ sample_mode=None,
310
+ resample_kernel=(1, 3, 3, 1)):
311
+ super(StyleConv, self).__init__()
312
+ self.modulated_conv = ModulatedConv2d(
313
+ in_channels,
314
+ out_channels,
315
+ kernel_size,
316
+ num_style_feat,
317
+ demodulate=demodulate,
318
+ sample_mode=sample_mode,
319
+ resample_kernel=resample_kernel)
320
+ self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
321
+ self.activate = FusedLeakyReLU(out_channels)
322
+
323
+ def forward(self, x, style, noise=None):
324
+ # modulate
325
+ out = self.modulated_conv(x, style)
326
+ # noise injection
327
+ if noise is None:
328
+ b, _, h, w = out.shape
329
+ noise = out.new_empty(b, 1, h, w).normal_()
330
+ out = out + self.weight * noise
331
+ # activation (with bias)
332
+ out = self.activate(out)
333
+ return out
334
+
335
+
336
+ class ToRGB(nn.Module):
337
+ """To RGB from features.
338
+
339
+ Args:
340
+ in_channels (int): Channel number of input.
341
+ num_style_feat (int): Channel number of style features.
342
+ upsample (bool): Whether to upsample. Default: True.
343
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
344
+ magnitude. Default: (1, 3, 3, 1).
345
+ """
346
+
347
+ def __init__(self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)):
348
+ super(ToRGB, self).__init__()
349
+ if upsample:
350
+ self.upsample = UpFirDnUpsample(resample_kernel, factor=2)
351
+ else:
352
+ self.upsample = None
353
+ self.modulated_conv = ModulatedConv2d(
354
+ in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
355
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
356
+
357
+ def forward(self, x, style, skip=None):
358
+ """Forward function.
359
+
360
+ Args:
361
+ x (Tensor): Feature tensor with shape (b, c, h, w).
362
+ style (Tensor): Tensor with shape (b, num_style_feat).
363
+ skip (Tensor): Base/skip tensor. Default: None.
364
+
365
+ Returns:
366
+ Tensor: RGB images.
367
+ """
368
+ out = self.modulated_conv(x, style)
369
+ out = out + self.bias
370
+ if skip is not None:
371
+ if self.upsample:
372
+ skip = self.upsample(skip)
373
+ out = out + skip
374
+ return out
375
+
376
+
377
+ class ConstantInput(nn.Module):
378
+ """Constant input.
379
+
380
+ Args:
381
+ num_channel (int): Channel number of constant input.
382
+ size (int): Spatial size of constant input.
383
+ """
384
+
385
+ def __init__(self, num_channel, size):
386
+ super(ConstantInput, self).__init__()
387
+ self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
388
+
389
+ def forward(self, batch):
390
+ out = self.weight.repeat(batch, 1, 1, 1)
391
+ return out
392
+
393
+
394
+ @ARCH_REGISTRY.register()
395
+ class StyleGAN2Generator(nn.Module):
396
+ """StyleGAN2 Generator.
397
+
398
+ Args:
399
+ out_size (int): The spatial size of outputs.
400
+ num_style_feat (int): Channel number of style features. Default: 512.
401
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
402
+ channel_multiplier (int): Channel multiplier for large networks of
403
+ StyleGAN2. Default: 2.
404
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
405
+ magnitude. A cross production will be applied to extent 1D resample
406
+ kernel to 2D resample kernel. Default: (1, 3, 3, 1).
407
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
408
+ narrow (float): Narrow ratio for channels. Default: 1.0.
409
+ """
410
+
411
+ def __init__(self,
412
+ out_size,
413
+ num_style_feat=512,
414
+ num_mlp=8,
415
+ channel_multiplier=2,
416
+ resample_kernel=(1, 3, 3, 1),
417
+ lr_mlp=0.01,
418
+ narrow=1):
419
+ super(StyleGAN2Generator, self).__init__()
420
+ # Style MLP layers
421
+ self.num_style_feat = num_style_feat
422
+ style_mlp_layers = [NormStyleCode()]
423
+ for i in range(num_mlp):
424
+ style_mlp_layers.append(
425
+ EqualLinear(
426
+ num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp,
427
+ activation='fused_lrelu'))
428
+ self.style_mlp = nn.Sequential(*style_mlp_layers)
429
+
430
+ channels = {
431
+ '4': int(512 * narrow),
432
+ '8': int(512 * narrow),
433
+ '16': int(512 * narrow),
434
+ '32': int(512 * narrow),
435
+ '64': int(256 * channel_multiplier * narrow),
436
+ '128': int(128 * channel_multiplier * narrow),
437
+ '256': int(64 * channel_multiplier * narrow),
438
+ '512': int(32 * channel_multiplier * narrow),
439
+ '1024': int(16 * channel_multiplier * narrow)
440
+ }
441
+ self.channels = channels
442
+
443
+ self.constant_input = ConstantInput(channels['4'], size=4)
444
+ self.style_conv1 = StyleConv(
445
+ channels['4'],
446
+ channels['4'],
447
+ kernel_size=3,
448
+ num_style_feat=num_style_feat,
449
+ demodulate=True,
450
+ sample_mode=None,
451
+ resample_kernel=resample_kernel)
452
+ self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, resample_kernel=resample_kernel)
453
+
454
+ self.log_size = int(math.log(out_size, 2))
455
+ self.num_layers = (self.log_size - 2) * 2 + 1
456
+ self.num_latent = self.log_size * 2 - 2
457
+
458
+ self.style_convs = nn.ModuleList()
459
+ self.to_rgbs = nn.ModuleList()
460
+ self.noises = nn.Module()
461
+
462
+ in_channels = channels['4']
463
+ # noise
464
+ for layer_idx in range(self.num_layers):
465
+ resolution = 2**((layer_idx + 5) // 2)
466
+ shape = [1, 1, resolution, resolution]
467
+ self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
468
+ # style convs and to_rgbs
469
+ for i in range(3, self.log_size + 1):
470
+ out_channels = channels[f'{2**i}']
471
+ self.style_convs.append(
472
+ StyleConv(
473
+ in_channels,
474
+ out_channels,
475
+ kernel_size=3,
476
+ num_style_feat=num_style_feat,
477
+ demodulate=True,
478
+ sample_mode='upsample',
479
+ resample_kernel=resample_kernel,
480
+ ))
481
+ self.style_convs.append(
482
+ StyleConv(
483
+ out_channels,
484
+ out_channels,
485
+ kernel_size=3,
486
+ num_style_feat=num_style_feat,
487
+ demodulate=True,
488
+ sample_mode=None,
489
+ resample_kernel=resample_kernel))
490
+ self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True, resample_kernel=resample_kernel))
491
+ in_channels = out_channels
492
+
493
+ def make_noise(self):
494
+ """Make noise for noise injection."""
495
+ device = self.constant_input.weight.device
496
+ noises = [torch.randn(1, 1, 4, 4, device=device)]
497
+
498
+ for i in range(3, self.log_size + 1):
499
+ for _ in range(2):
500
+ noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
501
+
502
+ return noises
503
+
504
+ def get_latent(self, x):
505
+ return self.style_mlp(x)
506
+
507
+ def mean_latent(self, num_latent):
508
+ latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
509
+ latent = self.style_mlp(latent_in).mean(0, keepdim=True)
510
+ return latent
511
+
512
+ def forward(self,
513
+ styles,
514
+ input_is_latent=False,
515
+ noise=None,
516
+ randomize_noise=True,
517
+ truncation=1,
518
+ truncation_latent=None,
519
+ inject_index=None,
520
+ return_latents=False):
521
+ """Forward function for StyleGAN2Generator.
522
+
523
+ Args:
524
+ styles (list[Tensor]): Sample codes of styles.
525
+ input_is_latent (bool): Whether input is latent style.
526
+ Default: False.
527
+ noise (Tensor | None): Input noise or None. Default: None.
528
+ randomize_noise (bool): Randomize noise, used when 'noise' is
529
+ False. Default: True.
530
+ truncation (float): TODO. Default: 1.
531
+ truncation_latent (Tensor | None): TODO. Default: None.
532
+ inject_index (int | None): The injection index for mixing noise.
533
+ Default: None.
534
+ return_latents (bool): Whether to return style latents.
535
+ Default: False.
536
+ """
537
+ # style codes -> latents with Style MLP layer
538
+ if not input_is_latent:
539
+ styles = [self.style_mlp(s) for s in styles]
540
+ # noises
541
+ if noise is None:
542
+ if randomize_noise:
543
+ noise = [None] * self.num_layers # for each style conv layer
544
+ else: # use the stored noise
545
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
546
+ # style truncation
547
+ if truncation < 1:
548
+ style_truncation = []
549
+ for style in styles:
550
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
551
+ styles = style_truncation
552
+ # get style latent with injection
553
+ if len(styles) == 1:
554
+ inject_index = self.num_latent
555
+
556
+ if styles[0].ndim < 3:
557
+ # repeat latent code for all the layers
558
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
559
+ else: # used for encoder with different latent code for each layer
560
+ latent = styles[0]
561
+ elif len(styles) == 2: # mixing noises
562
+ if inject_index is None:
563
+ inject_index = random.randint(1, self.num_latent - 1)
564
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
565
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
566
+ latent = torch.cat([latent1, latent2], 1)
567
+
568
+ # main generation
569
+ out = self.constant_input(latent.shape[0])
570
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
571
+ skip = self.to_rgb1(out, latent[:, 1])
572
+
573
+ i = 1
574
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
575
+ noise[2::2], self.to_rgbs):
576
+ out = conv1(out, latent[:, i], noise=noise1)
577
+ out = conv2(out, latent[:, i + 1], noise=noise2)
578
+ skip = to_rgb(out, latent[:, i + 2], skip)
579
+ i += 2
580
+
581
+ image = skip
582
+
583
+ if return_latents:
584
+ return image, latent
585
+ else:
586
+ return image, None
587
+
588
+
589
+ class ScaledLeakyReLU(nn.Module):
590
+ """Scaled LeakyReLU.
591
+
592
+ Args:
593
+ negative_slope (float): Negative slope. Default: 0.2.
594
+ """
595
+
596
+ def __init__(self, negative_slope=0.2):
597
+ super(ScaledLeakyReLU, self).__init__()
598
+ self.negative_slope = negative_slope
599
+
600
+ def forward(self, x):
601
+ out = F.leaky_relu(x, negative_slope=self.negative_slope)
602
+ return out * math.sqrt(2)
603
+
604
+
605
+ class EqualConv2d(nn.Module):
606
+ """Equalized Linear as StyleGAN2.
607
+
608
+ Args:
609
+ in_channels (int): Channel number of the input.
610
+ out_channels (int): Channel number of the output.
611
+ kernel_size (int): Size of the convolving kernel.
612
+ stride (int): Stride of the convolution. Default: 1
613
+ padding (int): Zero-padding added to both sides of the input.
614
+ Default: 0.
615
+ bias (bool): If ``True``, adds a learnable bias to the output.
616
+ Default: ``True``.
617
+ bias_init_val (float): Bias initialized value. Default: 0.
618
+ """
619
+
620
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0):
621
+ super(EqualConv2d, self).__init__()
622
+ self.in_channels = in_channels
623
+ self.out_channels = out_channels
624
+ self.kernel_size = kernel_size
625
+ self.stride = stride
626
+ self.padding = padding
627
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
628
+
629
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
630
+ if bias:
631
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
632
+ else:
633
+ self.register_parameter('bias', None)
634
+
635
+ def forward(self, x):
636
+ out = F.conv2d(
637
+ x,
638
+ self.weight * self.scale,
639
+ bias=self.bias,
640
+ stride=self.stride,
641
+ padding=self.padding,
642
+ )
643
+
644
+ return out
645
+
646
+ def __repr__(self):
647
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
648
+ f'out_channels={self.out_channels}, '
649
+ f'kernel_size={self.kernel_size},'
650
+ f' stride={self.stride}, padding={self.padding}, '
651
+ f'bias={self.bias is not None})')
652
+
653
+
654
+ class ConvLayer(nn.Sequential):
655
+ """Conv Layer used in StyleGAN2 Discriminator.
656
+
657
+ Args:
658
+ in_channels (int): Channel number of the input.
659
+ out_channels (int): Channel number of the output.
660
+ kernel_size (int): Kernel size.
661
+ downsample (bool): Whether downsample by a factor of 2.
662
+ Default: False.
663
+ resample_kernel (list[int]): A list indicating the 1D resample
664
+ kernel magnitude. A cross production will be applied to
665
+ extent 1D resample kernel to 2D resample kernel.
666
+ Default: (1, 3, 3, 1).
667
+ bias (bool): Whether with bias. Default: True.
668
+ activate (bool): Whether use activateion. Default: True.
669
+ """
670
+
671
+ def __init__(self,
672
+ in_channels,
673
+ out_channels,
674
+ kernel_size,
675
+ downsample=False,
676
+ resample_kernel=(1, 3, 3, 1),
677
+ bias=True,
678
+ activate=True):
679
+ layers = []
680
+ # downsample
681
+ if downsample:
682
+ layers.append(
683
+ UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size))
684
+ stride = 2
685
+ self.padding = 0
686
+ else:
687
+ stride = 1
688
+ self.padding = kernel_size // 2
689
+ # conv
690
+ layers.append(
691
+ EqualConv2d(
692
+ in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias
693
+ and not activate))
694
+ # activation
695
+ if activate:
696
+ if bias:
697
+ layers.append(FusedLeakyReLU(out_channels))
698
+ else:
699
+ layers.append(ScaledLeakyReLU(0.2))
700
+
701
+ super(ConvLayer, self).__init__(*layers)
702
+
703
+
704
+ class ResBlock(nn.Module):
705
+ """Residual block used in StyleGAN2 Discriminator.
706
+
707
+ Args:
708
+ in_channels (int): Channel number of the input.
709
+ out_channels (int): Channel number of the output.
710
+ resample_kernel (list[int]): A list indicating the 1D resample
711
+ kernel magnitude. A cross production will be applied to
712
+ extent 1D resample kernel to 2D resample kernel.
713
+ Default: (1, 3, 3, 1).
714
+ """
715
+
716
+ def __init__(self, in_channels, out_channels, resample_kernel=(1, 3, 3, 1)):
717
+ super(ResBlock, self).__init__()
718
+
719
+ self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
720
+ self.conv2 = ConvLayer(
721
+ in_channels, out_channels, 3, downsample=True, resample_kernel=resample_kernel, bias=True, activate=True)
722
+ self.skip = ConvLayer(
723
+ in_channels, out_channels, 1, downsample=True, resample_kernel=resample_kernel, bias=False, activate=False)
724
+
725
+ def forward(self, x):
726
+ out = self.conv1(x)
727
+ out = self.conv2(out)
728
+ skip = self.skip(x)
729
+ out = (out + skip) / math.sqrt(2)
730
+ return out
731
+
732
+
733
+ @ARCH_REGISTRY.register()
734
+ class StyleGAN2Discriminator(nn.Module):
735
+ """StyleGAN2 Discriminator.
736
+
737
+ Args:
738
+ out_size (int): The spatial size of outputs.
739
+ channel_multiplier (int): Channel multiplier for large networks of
740
+ StyleGAN2. Default: 2.
741
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
742
+ magnitude. A cross production will be applied to extent 1D resample
743
+ kernel to 2D resample kernel. Default: (1, 3, 3, 1).
744
+ stddev_group (int): For group stddev statistics. Default: 4.
745
+ narrow (float): Narrow ratio for channels. Default: 1.0.
746
+ """
747
+
748
+ def __init__(self, out_size, channel_multiplier=2, resample_kernel=(1, 3, 3, 1), stddev_group=4, narrow=1):
749
+ super(StyleGAN2Discriminator, self).__init__()
750
+
751
+ channels = {
752
+ '4': int(512 * narrow),
753
+ '8': int(512 * narrow),
754
+ '16': int(512 * narrow),
755
+ '32': int(512 * narrow),
756
+ '64': int(256 * channel_multiplier * narrow),
757
+ '128': int(128 * channel_multiplier * narrow),
758
+ '256': int(64 * channel_multiplier * narrow),
759
+ '512': int(32 * channel_multiplier * narrow),
760
+ '1024': int(16 * channel_multiplier * narrow)
761
+ }
762
+
763
+ log_size = int(math.log(out_size, 2))
764
+
765
+ conv_body = [ConvLayer(3, channels[f'{out_size}'], 1, bias=True, activate=True)]
766
+
767
+ in_channels = channels[f'{out_size}']
768
+ for i in range(log_size, 2, -1):
769
+ out_channels = channels[f'{2**(i - 1)}']
770
+ conv_body.append(ResBlock(in_channels, out_channels, resample_kernel))
771
+ in_channels = out_channels
772
+ self.conv_body = nn.Sequential(*conv_body)
773
+
774
+ self.final_conv = ConvLayer(in_channels + 1, channels['4'], 3, bias=True, activate=True)
775
+ self.final_linear = nn.Sequential(
776
+ EqualLinear(
777
+ channels['4'] * 4 * 4, channels['4'], bias=True, bias_init_val=0, lr_mul=1, activation='fused_lrelu'),
778
+ EqualLinear(channels['4'], 1, bias=True, bias_init_val=0, lr_mul=1, activation=None),
779
+ )
780
+ self.stddev_group = stddev_group
781
+ self.stddev_feat = 1
782
+
783
+ def forward(self, x):
784
+ out = self.conv_body(x)
785
+
786
+ b, c, h, w = out.shape
787
+ # concatenate a group stddev statistics to out
788
+ group = min(b, self.stddev_group) # Minibatch must be divisible by (or smaller than) group_size
789
+ stddev = out.view(group, -1, self.stddev_feat, c // self.stddev_feat, h, w)
790
+ stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
791
+ stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
792
+ stddev = stddev.repeat(group, 1, h, w)
793
+ out = torch.cat([out, stddev], 1)
794
+
795
+ out = self.final_conv(out)
796
+ out = out.view(b, -1)
797
+ out = self.final_linear(out)
798
+
799
+ return out
StableSR/basicsr/archs/stylegan2_bilinear_arch.py ADDED
@@ -0,0 +1,614 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ from basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu
8
+ from basicsr.utils.registry import ARCH_REGISTRY
9
+
10
+
11
+ class NormStyleCode(nn.Module):
12
+
13
+ def forward(self, x):
14
+ """Normalize the style codes.
15
+
16
+ Args:
17
+ x (Tensor): Style codes with shape (b, c).
18
+
19
+ Returns:
20
+ Tensor: Normalized tensor.
21
+ """
22
+ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
23
+
24
+
25
+ class EqualLinear(nn.Module):
26
+ """Equalized Linear as StyleGAN2.
27
+
28
+ Args:
29
+ in_channels (int): Size of each sample.
30
+ out_channels (int): Size of each output sample.
31
+ bias (bool): If set to ``False``, the layer will not learn an additive
32
+ bias. Default: ``True``.
33
+ bias_init_val (float): Bias initialized value. Default: 0.
34
+ lr_mul (float): Learning rate multiplier. Default: 1.
35
+ activation (None | str): The activation after ``linear`` operation.
36
+ Supported: 'fused_lrelu', None. Default: None.
37
+ """
38
+
39
+ def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None):
40
+ super(EqualLinear, self).__init__()
41
+ self.in_channels = in_channels
42
+ self.out_channels = out_channels
43
+ self.lr_mul = lr_mul
44
+ self.activation = activation
45
+ if self.activation not in ['fused_lrelu', None]:
46
+ raise ValueError(f'Wrong activation value in EqualLinear: {activation}'
47
+ "Supported ones are: ['fused_lrelu', None].")
48
+ self.scale = (1 / math.sqrt(in_channels)) * lr_mul
49
+
50
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
51
+ if bias:
52
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
53
+ else:
54
+ self.register_parameter('bias', None)
55
+
56
+ def forward(self, x):
57
+ if self.bias is None:
58
+ bias = None
59
+ else:
60
+ bias = self.bias * self.lr_mul
61
+ if self.activation == 'fused_lrelu':
62
+ out = F.linear(x, self.weight * self.scale)
63
+ out = fused_leaky_relu(out, bias)
64
+ else:
65
+ out = F.linear(x, self.weight * self.scale, bias=bias)
66
+ return out
67
+
68
+ def __repr__(self):
69
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
70
+ f'out_channels={self.out_channels}, bias={self.bias is not None})')
71
+
72
+
73
+ class ModulatedConv2d(nn.Module):
74
+ """Modulated Conv2d used in StyleGAN2.
75
+
76
+ There is no bias in ModulatedConv2d.
77
+
78
+ Args:
79
+ in_channels (int): Channel number of the input.
80
+ out_channels (int): Channel number of the output.
81
+ kernel_size (int): Size of the convolving kernel.
82
+ num_style_feat (int): Channel number of style features.
83
+ demodulate (bool): Whether to demodulate in the conv layer.
84
+ Default: True.
85
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
86
+ Default: None.
87
+ eps (float): A value added to the denominator for numerical stability.
88
+ Default: 1e-8.
89
+ """
90
+
91
+ def __init__(self,
92
+ in_channels,
93
+ out_channels,
94
+ kernel_size,
95
+ num_style_feat,
96
+ demodulate=True,
97
+ sample_mode=None,
98
+ eps=1e-8,
99
+ interpolation_mode='bilinear'):
100
+ super(ModulatedConv2d, self).__init__()
101
+ self.in_channels = in_channels
102
+ self.out_channels = out_channels
103
+ self.kernel_size = kernel_size
104
+ self.demodulate = demodulate
105
+ self.sample_mode = sample_mode
106
+ self.eps = eps
107
+ self.interpolation_mode = interpolation_mode
108
+ if self.interpolation_mode == 'nearest':
109
+ self.align_corners = None
110
+ else:
111
+ self.align_corners = False
112
+
113
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
114
+ # modulation inside each modulated conv
115
+ self.modulation = EqualLinear(
116
+ num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None)
117
+
118
+ self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size))
119
+ self.padding = kernel_size // 2
120
+
121
+ def forward(self, x, style):
122
+ """Forward function.
123
+
124
+ Args:
125
+ x (Tensor): Tensor with shape (b, c, h, w).
126
+ style (Tensor): Tensor with shape (b, num_style_feat).
127
+
128
+ Returns:
129
+ Tensor: Modulated tensor after convolution.
130
+ """
131
+ b, c, h, w = x.shape # c = c_in
132
+ # weight modulation
133
+ style = self.modulation(style).view(b, 1, c, 1, 1)
134
+ # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
135
+ weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
136
+
137
+ if self.demodulate:
138
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
139
+ weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
140
+
141
+ weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
142
+
143
+ if self.sample_mode == 'upsample':
144
+ x = F.interpolate(x, scale_factor=2, mode=self.interpolation_mode, align_corners=self.align_corners)
145
+ elif self.sample_mode == 'downsample':
146
+ x = F.interpolate(x, scale_factor=0.5, mode=self.interpolation_mode, align_corners=self.align_corners)
147
+
148
+ b, c, h, w = x.shape
149
+ x = x.view(1, b * c, h, w)
150
+ # weight: (b*c_out, c_in, k, k), groups=b
151
+ out = F.conv2d(x, weight, padding=self.padding, groups=b)
152
+ out = out.view(b, self.out_channels, *out.shape[2:4])
153
+
154
+ return out
155
+
156
+ def __repr__(self):
157
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
158
+ f'out_channels={self.out_channels}, '
159
+ f'kernel_size={self.kernel_size}, '
160
+ f'demodulate={self.demodulate}, sample_mode={self.sample_mode})')
161
+
162
+
163
+ class StyleConv(nn.Module):
164
+ """Style conv.
165
+
166
+ Args:
167
+ in_channels (int): Channel number of the input.
168
+ out_channels (int): Channel number of the output.
169
+ kernel_size (int): Size of the convolving kernel.
170
+ num_style_feat (int): Channel number of style features.
171
+ demodulate (bool): Whether demodulate in the conv layer. Default: True.
172
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
173
+ Default: None.
174
+ """
175
+
176
+ def __init__(self,
177
+ in_channels,
178
+ out_channels,
179
+ kernel_size,
180
+ num_style_feat,
181
+ demodulate=True,
182
+ sample_mode=None,
183
+ interpolation_mode='bilinear'):
184
+ super(StyleConv, self).__init__()
185
+ self.modulated_conv = ModulatedConv2d(
186
+ in_channels,
187
+ out_channels,
188
+ kernel_size,
189
+ num_style_feat,
190
+ demodulate=demodulate,
191
+ sample_mode=sample_mode,
192
+ interpolation_mode=interpolation_mode)
193
+ self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
194
+ self.activate = FusedLeakyReLU(out_channels)
195
+
196
+ def forward(self, x, style, noise=None):
197
+ # modulate
198
+ out = self.modulated_conv(x, style)
199
+ # noise injection
200
+ if noise is None:
201
+ b, _, h, w = out.shape
202
+ noise = out.new_empty(b, 1, h, w).normal_()
203
+ out = out + self.weight * noise
204
+ # activation (with bias)
205
+ out = self.activate(out)
206
+ return out
207
+
208
+
209
+ class ToRGB(nn.Module):
210
+ """To RGB from features.
211
+
212
+ Args:
213
+ in_channels (int): Channel number of input.
214
+ num_style_feat (int): Channel number of style features.
215
+ upsample (bool): Whether to upsample. Default: True.
216
+ """
217
+
218
+ def __init__(self, in_channels, num_style_feat, upsample=True, interpolation_mode='bilinear'):
219
+ super(ToRGB, self).__init__()
220
+ self.upsample = upsample
221
+ self.interpolation_mode = interpolation_mode
222
+ if self.interpolation_mode == 'nearest':
223
+ self.align_corners = None
224
+ else:
225
+ self.align_corners = False
226
+ self.modulated_conv = ModulatedConv2d(
227
+ in_channels,
228
+ 3,
229
+ kernel_size=1,
230
+ num_style_feat=num_style_feat,
231
+ demodulate=False,
232
+ sample_mode=None,
233
+ interpolation_mode=interpolation_mode)
234
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
235
+
236
+ def forward(self, x, style, skip=None):
237
+ """Forward function.
238
+
239
+ Args:
240
+ x (Tensor): Feature tensor with shape (b, c, h, w).
241
+ style (Tensor): Tensor with shape (b, num_style_feat).
242
+ skip (Tensor): Base/skip tensor. Default: None.
243
+
244
+ Returns:
245
+ Tensor: RGB images.
246
+ """
247
+ out = self.modulated_conv(x, style)
248
+ out = out + self.bias
249
+ if skip is not None:
250
+ if self.upsample:
251
+ skip = F.interpolate(
252
+ skip, scale_factor=2, mode=self.interpolation_mode, align_corners=self.align_corners)
253
+ out = out + skip
254
+ return out
255
+
256
+
257
+ class ConstantInput(nn.Module):
258
+ """Constant input.
259
+
260
+ Args:
261
+ num_channel (int): Channel number of constant input.
262
+ size (int): Spatial size of constant input.
263
+ """
264
+
265
+ def __init__(self, num_channel, size):
266
+ super(ConstantInput, self).__init__()
267
+ self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
268
+
269
+ def forward(self, batch):
270
+ out = self.weight.repeat(batch, 1, 1, 1)
271
+ return out
272
+
273
+
274
+ @ARCH_REGISTRY.register(suffix='basicsr')
275
+ class StyleGAN2GeneratorBilinear(nn.Module):
276
+ """StyleGAN2 Generator.
277
+
278
+ Args:
279
+ out_size (int): The spatial size of outputs.
280
+ num_style_feat (int): Channel number of style features. Default: 512.
281
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
282
+ channel_multiplier (int): Channel multiplier for large networks of
283
+ StyleGAN2. Default: 2.
284
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
285
+ narrow (float): Narrow ratio for channels. Default: 1.0.
286
+ """
287
+
288
+ def __init__(self,
289
+ out_size,
290
+ num_style_feat=512,
291
+ num_mlp=8,
292
+ channel_multiplier=2,
293
+ lr_mlp=0.01,
294
+ narrow=1,
295
+ interpolation_mode='bilinear'):
296
+ super(StyleGAN2GeneratorBilinear, self).__init__()
297
+ # Style MLP layers
298
+ self.num_style_feat = num_style_feat
299
+ style_mlp_layers = [NormStyleCode()]
300
+ for i in range(num_mlp):
301
+ style_mlp_layers.append(
302
+ EqualLinear(
303
+ num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp,
304
+ activation='fused_lrelu'))
305
+ self.style_mlp = nn.Sequential(*style_mlp_layers)
306
+
307
+ channels = {
308
+ '4': int(512 * narrow),
309
+ '8': int(512 * narrow),
310
+ '16': int(512 * narrow),
311
+ '32': int(512 * narrow),
312
+ '64': int(256 * channel_multiplier * narrow),
313
+ '128': int(128 * channel_multiplier * narrow),
314
+ '256': int(64 * channel_multiplier * narrow),
315
+ '512': int(32 * channel_multiplier * narrow),
316
+ '1024': int(16 * channel_multiplier * narrow)
317
+ }
318
+ self.channels = channels
319
+
320
+ self.constant_input = ConstantInput(channels['4'], size=4)
321
+ self.style_conv1 = StyleConv(
322
+ channels['4'],
323
+ channels['4'],
324
+ kernel_size=3,
325
+ num_style_feat=num_style_feat,
326
+ demodulate=True,
327
+ sample_mode=None,
328
+ interpolation_mode=interpolation_mode)
329
+ self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, interpolation_mode=interpolation_mode)
330
+
331
+ self.log_size = int(math.log(out_size, 2))
332
+ self.num_layers = (self.log_size - 2) * 2 + 1
333
+ self.num_latent = self.log_size * 2 - 2
334
+
335
+ self.style_convs = nn.ModuleList()
336
+ self.to_rgbs = nn.ModuleList()
337
+ self.noises = nn.Module()
338
+
339
+ in_channels = channels['4']
340
+ # noise
341
+ for layer_idx in range(self.num_layers):
342
+ resolution = 2**((layer_idx + 5) // 2)
343
+ shape = [1, 1, resolution, resolution]
344
+ self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
345
+ # style convs and to_rgbs
346
+ for i in range(3, self.log_size + 1):
347
+ out_channels = channels[f'{2**i}']
348
+ self.style_convs.append(
349
+ StyleConv(
350
+ in_channels,
351
+ out_channels,
352
+ kernel_size=3,
353
+ num_style_feat=num_style_feat,
354
+ demodulate=True,
355
+ sample_mode='upsample',
356
+ interpolation_mode=interpolation_mode))
357
+ self.style_convs.append(
358
+ StyleConv(
359
+ out_channels,
360
+ out_channels,
361
+ kernel_size=3,
362
+ num_style_feat=num_style_feat,
363
+ demodulate=True,
364
+ sample_mode=None,
365
+ interpolation_mode=interpolation_mode))
366
+ self.to_rgbs.append(
367
+ ToRGB(out_channels, num_style_feat, upsample=True, interpolation_mode=interpolation_mode))
368
+ in_channels = out_channels
369
+
370
+ def make_noise(self):
371
+ """Make noise for noise injection."""
372
+ device = self.constant_input.weight.device
373
+ noises = [torch.randn(1, 1, 4, 4, device=device)]
374
+
375
+ for i in range(3, self.log_size + 1):
376
+ for _ in range(2):
377
+ noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
378
+
379
+ return noises
380
+
381
+ def get_latent(self, x):
382
+ return self.style_mlp(x)
383
+
384
+ def mean_latent(self, num_latent):
385
+ latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
386
+ latent = self.style_mlp(latent_in).mean(0, keepdim=True)
387
+ return latent
388
+
389
+ def forward(self,
390
+ styles,
391
+ input_is_latent=False,
392
+ noise=None,
393
+ randomize_noise=True,
394
+ truncation=1,
395
+ truncation_latent=None,
396
+ inject_index=None,
397
+ return_latents=False):
398
+ """Forward function for StyleGAN2Generator.
399
+
400
+ Args:
401
+ styles (list[Tensor]): Sample codes of styles.
402
+ input_is_latent (bool): Whether input is latent style.
403
+ Default: False.
404
+ noise (Tensor | None): Input noise or None. Default: None.
405
+ randomize_noise (bool): Randomize noise, used when 'noise' is
406
+ False. Default: True.
407
+ truncation (float): TODO. Default: 1.
408
+ truncation_latent (Tensor | None): TODO. Default: None.
409
+ inject_index (int | None): The injection index for mixing noise.
410
+ Default: None.
411
+ return_latents (bool): Whether to return style latents.
412
+ Default: False.
413
+ """
414
+ # style codes -> latents with Style MLP layer
415
+ if not input_is_latent:
416
+ styles = [self.style_mlp(s) for s in styles]
417
+ # noises
418
+ if noise is None:
419
+ if randomize_noise:
420
+ noise = [None] * self.num_layers # for each style conv layer
421
+ else: # use the stored noise
422
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
423
+ # style truncation
424
+ if truncation < 1:
425
+ style_truncation = []
426
+ for style in styles:
427
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
428
+ styles = style_truncation
429
+ # get style latent with injection
430
+ if len(styles) == 1:
431
+ inject_index = self.num_latent
432
+
433
+ if styles[0].ndim < 3:
434
+ # repeat latent code for all the layers
435
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
436
+ else: # used for encoder with different latent code for each layer
437
+ latent = styles[0]
438
+ elif len(styles) == 2: # mixing noises
439
+ if inject_index is None:
440
+ inject_index = random.randint(1, self.num_latent - 1)
441
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
442
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
443
+ latent = torch.cat([latent1, latent2], 1)
444
+
445
+ # main generation
446
+ out = self.constant_input(latent.shape[0])
447
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
448
+ skip = self.to_rgb1(out, latent[:, 1])
449
+
450
+ i = 1
451
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
452
+ noise[2::2], self.to_rgbs):
453
+ out = conv1(out, latent[:, i], noise=noise1)
454
+ out = conv2(out, latent[:, i + 1], noise=noise2)
455
+ skip = to_rgb(out, latent[:, i + 2], skip)
456
+ i += 2
457
+
458
+ image = skip
459
+
460
+ if return_latents:
461
+ return image, latent
462
+ else:
463
+ return image, None
464
+
465
+
466
+ class ScaledLeakyReLU(nn.Module):
467
+ """Scaled LeakyReLU.
468
+
469
+ Args:
470
+ negative_slope (float): Negative slope. Default: 0.2.
471
+ """
472
+
473
+ def __init__(self, negative_slope=0.2):
474
+ super(ScaledLeakyReLU, self).__init__()
475
+ self.negative_slope = negative_slope
476
+
477
+ def forward(self, x):
478
+ out = F.leaky_relu(x, negative_slope=self.negative_slope)
479
+ return out * math.sqrt(2)
480
+
481
+
482
+ class EqualConv2d(nn.Module):
483
+ """Equalized Linear as StyleGAN2.
484
+
485
+ Args:
486
+ in_channels (int): Channel number of the input.
487
+ out_channels (int): Channel number of the output.
488
+ kernel_size (int): Size of the convolving kernel.
489
+ stride (int): Stride of the convolution. Default: 1
490
+ padding (int): Zero-padding added to both sides of the input.
491
+ Default: 0.
492
+ bias (bool): If ``True``, adds a learnable bias to the output.
493
+ Default: ``True``.
494
+ bias_init_val (float): Bias initialized value. Default: 0.
495
+ """
496
+
497
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0):
498
+ super(EqualConv2d, self).__init__()
499
+ self.in_channels = in_channels
500
+ self.out_channels = out_channels
501
+ self.kernel_size = kernel_size
502
+ self.stride = stride
503
+ self.padding = padding
504
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
505
+
506
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
507
+ if bias:
508
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
509
+ else:
510
+ self.register_parameter('bias', None)
511
+
512
+ def forward(self, x):
513
+ out = F.conv2d(
514
+ x,
515
+ self.weight * self.scale,
516
+ bias=self.bias,
517
+ stride=self.stride,
518
+ padding=self.padding,
519
+ )
520
+
521
+ return out
522
+
523
+ def __repr__(self):
524
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
525
+ f'out_channels={self.out_channels}, '
526
+ f'kernel_size={self.kernel_size},'
527
+ f' stride={self.stride}, padding={self.padding}, '
528
+ f'bias={self.bias is not None})')
529
+
530
+
531
+ class ConvLayer(nn.Sequential):
532
+ """Conv Layer used in StyleGAN2 Discriminator.
533
+
534
+ Args:
535
+ in_channels (int): Channel number of the input.
536
+ out_channels (int): Channel number of the output.
537
+ kernel_size (int): Kernel size.
538
+ downsample (bool): Whether downsample by a factor of 2.
539
+ Default: False.
540
+ bias (bool): Whether with bias. Default: True.
541
+ activate (bool): Whether use activateion. Default: True.
542
+ """
543
+
544
+ def __init__(self,
545
+ in_channels,
546
+ out_channels,
547
+ kernel_size,
548
+ downsample=False,
549
+ bias=True,
550
+ activate=True,
551
+ interpolation_mode='bilinear'):
552
+ layers = []
553
+ self.interpolation_mode = interpolation_mode
554
+ # downsample
555
+ if downsample:
556
+ if self.interpolation_mode == 'nearest':
557
+ self.align_corners = None
558
+ else:
559
+ self.align_corners = False
560
+
561
+ layers.append(
562
+ torch.nn.Upsample(scale_factor=0.5, mode=interpolation_mode, align_corners=self.align_corners))
563
+ stride = 1
564
+ self.padding = kernel_size // 2
565
+ # conv
566
+ layers.append(
567
+ EqualConv2d(
568
+ in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias
569
+ and not activate))
570
+ # activation
571
+ if activate:
572
+ if bias:
573
+ layers.append(FusedLeakyReLU(out_channels))
574
+ else:
575
+ layers.append(ScaledLeakyReLU(0.2))
576
+
577
+ super(ConvLayer, self).__init__(*layers)
578
+
579
+
580
+ class ResBlock(nn.Module):
581
+ """Residual block used in StyleGAN2 Discriminator.
582
+
583
+ Args:
584
+ in_channels (int): Channel number of the input.
585
+ out_channels (int): Channel number of the output.
586
+ """
587
+
588
+ def __init__(self, in_channels, out_channels, interpolation_mode='bilinear'):
589
+ super(ResBlock, self).__init__()
590
+
591
+ self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
592
+ self.conv2 = ConvLayer(
593
+ in_channels,
594
+ out_channels,
595
+ 3,
596
+ downsample=True,
597
+ interpolation_mode=interpolation_mode,
598
+ bias=True,
599
+ activate=True)
600
+ self.skip = ConvLayer(
601
+ in_channels,
602
+ out_channels,
603
+ 1,
604
+ downsample=True,
605
+ interpolation_mode=interpolation_mode,
606
+ bias=False,
607
+ activate=False)
608
+
609
+ def forward(self, x):
610
+ out = self.conv1(x)
611
+ out = self.conv2(out)
612
+ skip = self.skip(x)
613
+ out = (out + skip) / math.sqrt(2)
614
+ return out
StableSR/basicsr/archs/swinir_arch.py ADDED
@@ -0,0 +1,956 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified from https://github.com/JingyunLiang/SwinIR
2
+ # SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257
3
+ # Originally Written by Ze Liu, Modified by Jingyun Liang.
4
+
5
+ import math
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.utils.checkpoint as checkpoint
9
+
10
+ from basicsr.utils.registry import ARCH_REGISTRY
11
+ from .arch_util import to_2tuple, trunc_normal_
12
+
13
+
14
+ def drop_path(x, drop_prob: float = 0., training: bool = False):
15
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
16
+
17
+ From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
18
+ """
19
+ if drop_prob == 0. or not training:
20
+ return x
21
+ keep_prob = 1 - drop_prob
22
+ shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
23
+ random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
24
+ random_tensor.floor_() # binarize
25
+ output = x.div(keep_prob) * random_tensor
26
+ return output
27
+
28
+
29
+ class DropPath(nn.Module):
30
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
31
+
32
+ From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
33
+ """
34
+
35
+ def __init__(self, drop_prob=None):
36
+ super(DropPath, self).__init__()
37
+ self.drop_prob = drop_prob
38
+
39
+ def forward(self, x):
40
+ return drop_path(x, self.drop_prob, self.training)
41
+
42
+
43
+ class Mlp(nn.Module):
44
+
45
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
46
+ super().__init__()
47
+ out_features = out_features or in_features
48
+ hidden_features = hidden_features or in_features
49
+ self.fc1 = nn.Linear(in_features, hidden_features)
50
+ self.act = act_layer()
51
+ self.fc2 = nn.Linear(hidden_features, out_features)
52
+ self.drop = nn.Dropout(drop)
53
+
54
+ def forward(self, x):
55
+ x = self.fc1(x)
56
+ x = self.act(x)
57
+ x = self.drop(x)
58
+ x = self.fc2(x)
59
+ x = self.drop(x)
60
+ return x
61
+
62
+
63
+ def window_partition(x, window_size):
64
+ """
65
+ Args:
66
+ x: (b, h, w, c)
67
+ window_size (int): window size
68
+
69
+ Returns:
70
+ windows: (num_windows*b, window_size, window_size, c)
71
+ """
72
+ b, h, w, c = x.shape
73
+ x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
74
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
75
+ return windows
76
+
77
+
78
+ def window_reverse(windows, window_size, h, w):
79
+ """
80
+ Args:
81
+ windows: (num_windows*b, window_size, window_size, c)
82
+ window_size (int): Window size
83
+ h (int): Height of image
84
+ w (int): Width of image
85
+
86
+ Returns:
87
+ x: (b, h, w, c)
88
+ """
89
+ b = int(windows.shape[0] / (h * w / window_size / window_size))
90
+ x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
91
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
92
+ return x
93
+
94
+
95
+ class WindowAttention(nn.Module):
96
+ r""" Window based multi-head self attention (W-MSA) module with relative position bias.
97
+ It supports both of shifted and non-shifted window.
98
+
99
+ Args:
100
+ dim (int): Number of input channels.
101
+ window_size (tuple[int]): The height and width of the window.
102
+ num_heads (int): Number of attention heads.
103
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
104
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
105
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
106
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
107
+ """
108
+
109
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
110
+
111
+ super().__init__()
112
+ self.dim = dim
113
+ self.window_size = window_size # Wh, Ww
114
+ self.num_heads = num_heads
115
+ head_dim = dim // num_heads
116
+ self.scale = qk_scale or head_dim**-0.5
117
+
118
+ # define a parameter table of relative position bias
119
+ self.relative_position_bias_table = nn.Parameter(
120
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
121
+
122
+ # get pair-wise relative position index for each token inside the window
123
+ coords_h = torch.arange(self.window_size[0])
124
+ coords_w = torch.arange(self.window_size[1])
125
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
126
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
127
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
128
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
129
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
130
+ relative_coords[:, :, 1] += self.window_size[1] - 1
131
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
132
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
133
+ self.register_buffer('relative_position_index', relative_position_index)
134
+
135
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
136
+ self.attn_drop = nn.Dropout(attn_drop)
137
+ self.proj = nn.Linear(dim, dim)
138
+
139
+ self.proj_drop = nn.Dropout(proj_drop)
140
+
141
+ trunc_normal_(self.relative_position_bias_table, std=.02)
142
+ self.softmax = nn.Softmax(dim=-1)
143
+
144
+ def forward(self, x, mask=None):
145
+ """
146
+ Args:
147
+ x: input features with shape of (num_windows*b, n, c)
148
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
149
+ """
150
+ b_, n, c = x.shape
151
+ qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
152
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
153
+
154
+ q = q * self.scale
155
+ attn = (q @ k.transpose(-2, -1))
156
+
157
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
158
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
159
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
160
+ attn = attn + relative_position_bias.unsqueeze(0)
161
+
162
+ if mask is not None:
163
+ nw = mask.shape[0]
164
+ attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
165
+ attn = attn.view(-1, self.num_heads, n, n)
166
+ attn = self.softmax(attn)
167
+ else:
168
+ attn = self.softmax(attn)
169
+
170
+ attn = self.attn_drop(attn)
171
+
172
+ x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
173
+ x = self.proj(x)
174
+ x = self.proj_drop(x)
175
+ return x
176
+
177
+ def extra_repr(self) -> str:
178
+ return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
179
+
180
+ def flops(self, n):
181
+ # calculate flops for 1 window with token length of n
182
+ flops = 0
183
+ # qkv = self.qkv(x)
184
+ flops += n * self.dim * 3 * self.dim
185
+ # attn = (q @ k.transpose(-2, -1))
186
+ flops += self.num_heads * n * (self.dim // self.num_heads) * n
187
+ # x = (attn @ v)
188
+ flops += self.num_heads * n * n * (self.dim // self.num_heads)
189
+ # x = self.proj(x)
190
+ flops += n * self.dim * self.dim
191
+ return flops
192
+
193
+
194
+ class SwinTransformerBlock(nn.Module):
195
+ r""" Swin Transformer Block.
196
+
197
+ Args:
198
+ dim (int): Number of input channels.
199
+ input_resolution (tuple[int]): Input resolution.
200
+ num_heads (int): Number of attention heads.
201
+ window_size (int): Window size.
202
+ shift_size (int): Shift size for SW-MSA.
203
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
204
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
205
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
206
+ drop (float, optional): Dropout rate. Default: 0.0
207
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
208
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
209
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
210
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
211
+ """
212
+
213
+ def __init__(self,
214
+ dim,
215
+ input_resolution,
216
+ num_heads,
217
+ window_size=7,
218
+ shift_size=0,
219
+ mlp_ratio=4.,
220
+ qkv_bias=True,
221
+ qk_scale=None,
222
+ drop=0.,
223
+ attn_drop=0.,
224
+ drop_path=0.,
225
+ act_layer=nn.GELU,
226
+ norm_layer=nn.LayerNorm):
227
+ super().__init__()
228
+ self.dim = dim
229
+ self.input_resolution = input_resolution
230
+ self.num_heads = num_heads
231
+ self.window_size = window_size
232
+ self.shift_size = shift_size
233
+ self.mlp_ratio = mlp_ratio
234
+ if min(self.input_resolution) <= self.window_size:
235
+ # if window size is larger than input resolution, we don't partition windows
236
+ self.shift_size = 0
237
+ self.window_size = min(self.input_resolution)
238
+ assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'
239
+
240
+ self.norm1 = norm_layer(dim)
241
+ self.attn = WindowAttention(
242
+ dim,
243
+ window_size=to_2tuple(self.window_size),
244
+ num_heads=num_heads,
245
+ qkv_bias=qkv_bias,
246
+ qk_scale=qk_scale,
247
+ attn_drop=attn_drop,
248
+ proj_drop=drop)
249
+
250
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
251
+ self.norm2 = norm_layer(dim)
252
+ mlp_hidden_dim = int(dim * mlp_ratio)
253
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
254
+
255
+ if self.shift_size > 0:
256
+ attn_mask = self.calculate_mask(self.input_resolution)
257
+ else:
258
+ attn_mask = None
259
+
260
+ self.register_buffer('attn_mask', attn_mask)
261
+
262
+ def calculate_mask(self, x_size):
263
+ # calculate attention mask for SW-MSA
264
+ h, w = x_size
265
+ img_mask = torch.zeros((1, h, w, 1)) # 1 h w 1
266
+ h_slices = (slice(0, -self.window_size), slice(-self.window_size,
267
+ -self.shift_size), slice(-self.shift_size, None))
268
+ w_slices = (slice(0, -self.window_size), slice(-self.window_size,
269
+ -self.shift_size), slice(-self.shift_size, None))
270
+ cnt = 0
271
+ for h in h_slices:
272
+ for w in w_slices:
273
+ img_mask[:, h, w, :] = cnt
274
+ cnt += 1
275
+
276
+ mask_windows = window_partition(img_mask, self.window_size) # nw, window_size, window_size, 1
277
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
278
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
279
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
280
+
281
+ return attn_mask
282
+
283
+ def forward(self, x, x_size):
284
+ h, w = x_size
285
+ b, _, c = x.shape
286
+ # assert seq_len == h * w, "input feature has wrong size"
287
+
288
+ shortcut = x
289
+ x = self.norm1(x)
290
+ x = x.view(b, h, w, c)
291
+
292
+ # cyclic shift
293
+ if self.shift_size > 0:
294
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
295
+ else:
296
+ shifted_x = x
297
+
298
+ # partition windows
299
+ x_windows = window_partition(shifted_x, self.window_size) # nw*b, window_size, window_size, c
300
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, c) # nw*b, window_size*window_size, c
301
+
302
+ # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
303
+ if self.input_resolution == x_size:
304
+ attn_windows = self.attn(x_windows, mask=self.attn_mask) # nw*b, window_size*window_size, c
305
+ else:
306
+ attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
307
+
308
+ # merge windows
309
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
310
+ shifted_x = window_reverse(attn_windows, self.window_size, h, w) # b h' w' c
311
+
312
+ # reverse cyclic shift
313
+ if self.shift_size > 0:
314
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
315
+ else:
316
+ x = shifted_x
317
+ x = x.view(b, h * w, c)
318
+
319
+ # FFN
320
+ x = shortcut + self.drop_path(x)
321
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
322
+
323
+ return x
324
+
325
+ def extra_repr(self) -> str:
326
+ return (f'dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, '
327
+ f'window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}')
328
+
329
+ def flops(self):
330
+ flops = 0
331
+ h, w = self.input_resolution
332
+ # norm1
333
+ flops += self.dim * h * w
334
+ # W-MSA/SW-MSA
335
+ nw = h * w / self.window_size / self.window_size
336
+ flops += nw * self.attn.flops(self.window_size * self.window_size)
337
+ # mlp
338
+ flops += 2 * h * w * self.dim * self.dim * self.mlp_ratio
339
+ # norm2
340
+ flops += self.dim * h * w
341
+ return flops
342
+
343
+
344
+ class PatchMerging(nn.Module):
345
+ r""" Patch Merging Layer.
346
+
347
+ Args:
348
+ input_resolution (tuple[int]): Resolution of input feature.
349
+ dim (int): Number of input channels.
350
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
351
+ """
352
+
353
+ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
354
+ super().__init__()
355
+ self.input_resolution = input_resolution
356
+ self.dim = dim
357
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
358
+ self.norm = norm_layer(4 * dim)
359
+
360
+ def forward(self, x):
361
+ """
362
+ x: b, h*w, c
363
+ """
364
+ h, w = self.input_resolution
365
+ b, seq_len, c = x.shape
366
+ assert seq_len == h * w, 'input feature has wrong size'
367
+ assert h % 2 == 0 and w % 2 == 0, f'x size ({h}*{w}) are not even.'
368
+
369
+ x = x.view(b, h, w, c)
370
+
371
+ x0 = x[:, 0::2, 0::2, :] # b h/2 w/2 c
372
+ x1 = x[:, 1::2, 0::2, :] # b h/2 w/2 c
373
+ x2 = x[:, 0::2, 1::2, :] # b h/2 w/2 c
374
+ x3 = x[:, 1::2, 1::2, :] # b h/2 w/2 c
375
+ x = torch.cat([x0, x1, x2, x3], -1) # b h/2 w/2 4*c
376
+ x = x.view(b, -1, 4 * c) # b h/2*w/2 4*c
377
+
378
+ x = self.norm(x)
379
+ x = self.reduction(x)
380
+
381
+ return x
382
+
383
+ def extra_repr(self) -> str:
384
+ return f'input_resolution={self.input_resolution}, dim={self.dim}'
385
+
386
+ def flops(self):
387
+ h, w = self.input_resolution
388
+ flops = h * w * self.dim
389
+ flops += (h // 2) * (w // 2) * 4 * self.dim * 2 * self.dim
390
+ return flops
391
+
392
+
393
+ class BasicLayer(nn.Module):
394
+ """ A basic Swin Transformer layer for one stage.
395
+
396
+ Args:
397
+ dim (int): Number of input channels.
398
+ input_resolution (tuple[int]): Input resolution.
399
+ depth (int): Number of blocks.
400
+ num_heads (int): Number of attention heads.
401
+ window_size (int): Local window size.
402
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
403
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
404
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
405
+ drop (float, optional): Dropout rate. Default: 0.0
406
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
407
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
408
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
409
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
410
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
411
+ """
412
+
413
+ def __init__(self,
414
+ dim,
415
+ input_resolution,
416
+ depth,
417
+ num_heads,
418
+ window_size,
419
+ mlp_ratio=4.,
420
+ qkv_bias=True,
421
+ qk_scale=None,
422
+ drop=0.,
423
+ attn_drop=0.,
424
+ drop_path=0.,
425
+ norm_layer=nn.LayerNorm,
426
+ downsample=None,
427
+ use_checkpoint=False):
428
+
429
+ super().__init__()
430
+ self.dim = dim
431
+ self.input_resolution = input_resolution
432
+ self.depth = depth
433
+ self.use_checkpoint = use_checkpoint
434
+
435
+ # build blocks
436
+ self.blocks = nn.ModuleList([
437
+ SwinTransformerBlock(
438
+ dim=dim,
439
+ input_resolution=input_resolution,
440
+ num_heads=num_heads,
441
+ window_size=window_size,
442
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
443
+ mlp_ratio=mlp_ratio,
444
+ qkv_bias=qkv_bias,
445
+ qk_scale=qk_scale,
446
+ drop=drop,
447
+ attn_drop=attn_drop,
448
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
449
+ norm_layer=norm_layer) for i in range(depth)
450
+ ])
451
+
452
+ # patch merging layer
453
+ if downsample is not None:
454
+ self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
455
+ else:
456
+ self.downsample = None
457
+
458
+ def forward(self, x, x_size):
459
+ for blk in self.blocks:
460
+ if self.use_checkpoint:
461
+ x = checkpoint.checkpoint(blk, x)
462
+ else:
463
+ x = blk(x, x_size)
464
+ if self.downsample is not None:
465
+ x = self.downsample(x)
466
+ return x
467
+
468
+ def extra_repr(self) -> str:
469
+ return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}'
470
+
471
+ def flops(self):
472
+ flops = 0
473
+ for blk in self.blocks:
474
+ flops += blk.flops()
475
+ if self.downsample is not None:
476
+ flops += self.downsample.flops()
477
+ return flops
478
+
479
+
480
+ class RSTB(nn.Module):
481
+ """Residual Swin Transformer Block (RSTB).
482
+
483
+ Args:
484
+ dim (int): Number of input channels.
485
+ input_resolution (tuple[int]): Input resolution.
486
+ depth (int): Number of blocks.
487
+ num_heads (int): Number of attention heads.
488
+ window_size (int): Local window size.
489
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
490
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
491
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
492
+ drop (float, optional): Dropout rate. Default: 0.0
493
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
494
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
495
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
496
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
497
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
498
+ img_size: Input image size.
499
+ patch_size: Patch size.
500
+ resi_connection: The convolutional block before residual connection.
501
+ """
502
+
503
+ def __init__(self,
504
+ dim,
505
+ input_resolution,
506
+ depth,
507
+ num_heads,
508
+ window_size,
509
+ mlp_ratio=4.,
510
+ qkv_bias=True,
511
+ qk_scale=None,
512
+ drop=0.,
513
+ attn_drop=0.,
514
+ drop_path=0.,
515
+ norm_layer=nn.LayerNorm,
516
+ downsample=None,
517
+ use_checkpoint=False,
518
+ img_size=224,
519
+ patch_size=4,
520
+ resi_connection='1conv'):
521
+ super(RSTB, self).__init__()
522
+
523
+ self.dim = dim
524
+ self.input_resolution = input_resolution
525
+
526
+ self.residual_group = BasicLayer(
527
+ dim=dim,
528
+ input_resolution=input_resolution,
529
+ depth=depth,
530
+ num_heads=num_heads,
531
+ window_size=window_size,
532
+ mlp_ratio=mlp_ratio,
533
+ qkv_bias=qkv_bias,
534
+ qk_scale=qk_scale,
535
+ drop=drop,
536
+ attn_drop=attn_drop,
537
+ drop_path=drop_path,
538
+ norm_layer=norm_layer,
539
+ downsample=downsample,
540
+ use_checkpoint=use_checkpoint)
541
+
542
+ if resi_connection == '1conv':
543
+ self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
544
+ elif resi_connection == '3conv':
545
+ # to save parameters and memory
546
+ self.conv = nn.Sequential(
547
+ nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
548
+ nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
549
+ nn.Conv2d(dim // 4, dim, 3, 1, 1))
550
+
551
+ self.patch_embed = PatchEmbed(
552
+ img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
553
+
554
+ self.patch_unembed = PatchUnEmbed(
555
+ img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
556
+
557
+ def forward(self, x, x_size):
558
+ return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
559
+
560
+ def flops(self):
561
+ flops = 0
562
+ flops += self.residual_group.flops()
563
+ h, w = self.input_resolution
564
+ flops += h * w * self.dim * self.dim * 9
565
+ flops += self.patch_embed.flops()
566
+ flops += self.patch_unembed.flops()
567
+
568
+ return flops
569
+
570
+
571
+ class PatchEmbed(nn.Module):
572
+ r""" Image to Patch Embedding
573
+
574
+ Args:
575
+ img_size (int): Image size. Default: 224.
576
+ patch_size (int): Patch token size. Default: 4.
577
+ in_chans (int): Number of input image channels. Default: 3.
578
+ embed_dim (int): Number of linear projection output channels. Default: 96.
579
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
580
+ """
581
+
582
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
583
+ super().__init__()
584
+ img_size = to_2tuple(img_size)
585
+ patch_size = to_2tuple(patch_size)
586
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
587
+ self.img_size = img_size
588
+ self.patch_size = patch_size
589
+ self.patches_resolution = patches_resolution
590
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
591
+
592
+ self.in_chans = in_chans
593
+ self.embed_dim = embed_dim
594
+
595
+ if norm_layer is not None:
596
+ self.norm = norm_layer(embed_dim)
597
+ else:
598
+ self.norm = None
599
+
600
+ def forward(self, x):
601
+ x = x.flatten(2).transpose(1, 2) # b Ph*Pw c
602
+ if self.norm is not None:
603
+ x = self.norm(x)
604
+ return x
605
+
606
+ def flops(self):
607
+ flops = 0
608
+ h, w = self.img_size
609
+ if self.norm is not None:
610
+ flops += h * w * self.embed_dim
611
+ return flops
612
+
613
+
614
+ class PatchUnEmbed(nn.Module):
615
+ r""" Image to Patch Unembedding
616
+
617
+ Args:
618
+ img_size (int): Image size. Default: 224.
619
+ patch_size (int): Patch token size. Default: 4.
620
+ in_chans (int): Number of input image channels. Default: 3.
621
+ embed_dim (int): Number of linear projection output channels. Default: 96.
622
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
623
+ """
624
+
625
+ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
626
+ super().__init__()
627
+ img_size = to_2tuple(img_size)
628
+ patch_size = to_2tuple(patch_size)
629
+ patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
630
+ self.img_size = img_size
631
+ self.patch_size = patch_size
632
+ self.patches_resolution = patches_resolution
633
+ self.num_patches = patches_resolution[0] * patches_resolution[1]
634
+
635
+ self.in_chans = in_chans
636
+ self.embed_dim = embed_dim
637
+
638
+ def forward(self, x, x_size):
639
+ x = x.transpose(1, 2).view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) # b Ph*Pw c
640
+ return x
641
+
642
+ def flops(self):
643
+ flops = 0
644
+ return flops
645
+
646
+
647
+ class Upsample(nn.Sequential):
648
+ """Upsample module.
649
+
650
+ Args:
651
+ scale (int): Scale factor. Supported scales: 2^n and 3.
652
+ num_feat (int): Channel number of intermediate features.
653
+ """
654
+
655
+ def __init__(self, scale, num_feat):
656
+ m = []
657
+ if (scale & (scale - 1)) == 0: # scale = 2^n
658
+ for _ in range(int(math.log(scale, 2))):
659
+ m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
660
+ m.append(nn.PixelShuffle(2))
661
+ elif scale == 3:
662
+ m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
663
+ m.append(nn.PixelShuffle(3))
664
+ else:
665
+ raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
666
+ super(Upsample, self).__init__(*m)
667
+
668
+
669
+ class UpsampleOneStep(nn.Sequential):
670
+ """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
671
+ Used in lightweight SR to save parameters.
672
+
673
+ Args:
674
+ scale (int): Scale factor. Supported scales: 2^n and 3.
675
+ num_feat (int): Channel number of intermediate features.
676
+
677
+ """
678
+
679
+ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
680
+ self.num_feat = num_feat
681
+ self.input_resolution = input_resolution
682
+ m = []
683
+ m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
684
+ m.append(nn.PixelShuffle(scale))
685
+ super(UpsampleOneStep, self).__init__(*m)
686
+
687
+ def flops(self):
688
+ h, w = self.input_resolution
689
+ flops = h * w * self.num_feat * 3 * 9
690
+ return flops
691
+
692
+
693
+ @ARCH_REGISTRY.register()
694
+ class SwinIR(nn.Module):
695
+ r""" SwinIR
696
+ A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.
697
+
698
+ Args:
699
+ img_size (int | tuple(int)): Input image size. Default 64
700
+ patch_size (int | tuple(int)): Patch size. Default: 1
701
+ in_chans (int): Number of input image channels. Default: 3
702
+ embed_dim (int): Patch embedding dimension. Default: 96
703
+ depths (tuple(int)): Depth of each Swin Transformer layer.
704
+ num_heads (tuple(int)): Number of attention heads in different layers.
705
+ window_size (int): Window size. Default: 7
706
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
707
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
708
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
709
+ drop_rate (float): Dropout rate. Default: 0
710
+ attn_drop_rate (float): Attention dropout rate. Default: 0
711
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1
712
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
713
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
714
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True
715
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
716
+ upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
717
+ img_range: Image range. 1. or 255.
718
+ upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
719
+ resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
720
+ """
721
+
722
+ def __init__(self,
723
+ img_size=64,
724
+ patch_size=1,
725
+ in_chans=3,
726
+ embed_dim=96,
727
+ depths=(6, 6, 6, 6),
728
+ num_heads=(6, 6, 6, 6),
729
+ window_size=7,
730
+ mlp_ratio=4.,
731
+ qkv_bias=True,
732
+ qk_scale=None,
733
+ drop_rate=0.,
734
+ attn_drop_rate=0.,
735
+ drop_path_rate=0.1,
736
+ norm_layer=nn.LayerNorm,
737
+ ape=False,
738
+ patch_norm=True,
739
+ use_checkpoint=False,
740
+ upscale=2,
741
+ img_range=1.,
742
+ upsampler='',
743
+ resi_connection='1conv',
744
+ **kwargs):
745
+ super(SwinIR, self).__init__()
746
+ num_in_ch = in_chans
747
+ num_out_ch = in_chans
748
+ num_feat = 64
749
+ self.img_range = img_range
750
+ if in_chans == 3:
751
+ rgb_mean = (0.4488, 0.4371, 0.4040)
752
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
753
+ else:
754
+ self.mean = torch.zeros(1, 1, 1, 1)
755
+ self.upscale = upscale
756
+ self.upsampler = upsampler
757
+
758
+ # ------------------------- 1, shallow feature extraction ------------------------- #
759
+ self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
760
+
761
+ # ------------------------- 2, deep feature extraction ------------------------- #
762
+ self.num_layers = len(depths)
763
+ self.embed_dim = embed_dim
764
+ self.ape = ape
765
+ self.patch_norm = patch_norm
766
+ self.num_features = embed_dim
767
+ self.mlp_ratio = mlp_ratio
768
+
769
+ # split image into non-overlapping patches
770
+ self.patch_embed = PatchEmbed(
771
+ img_size=img_size,
772
+ patch_size=patch_size,
773
+ in_chans=embed_dim,
774
+ embed_dim=embed_dim,
775
+ norm_layer=norm_layer if self.patch_norm else None)
776
+ num_patches = self.patch_embed.num_patches
777
+ patches_resolution = self.patch_embed.patches_resolution
778
+ self.patches_resolution = patches_resolution
779
+
780
+ # merge non-overlapping patches into image
781
+ self.patch_unembed = PatchUnEmbed(
782
+ img_size=img_size,
783
+ patch_size=patch_size,
784
+ in_chans=embed_dim,
785
+ embed_dim=embed_dim,
786
+ norm_layer=norm_layer if self.patch_norm else None)
787
+
788
+ # absolute position embedding
789
+ if self.ape:
790
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
791
+ trunc_normal_(self.absolute_pos_embed, std=.02)
792
+
793
+ self.pos_drop = nn.Dropout(p=drop_rate)
794
+
795
+ # stochastic depth
796
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
797
+
798
+ # build Residual Swin Transformer blocks (RSTB)
799
+ self.layers = nn.ModuleList()
800
+ for i_layer in range(self.num_layers):
801
+ layer = RSTB(
802
+ dim=embed_dim,
803
+ input_resolution=(patches_resolution[0], patches_resolution[1]),
804
+ depth=depths[i_layer],
805
+ num_heads=num_heads[i_layer],
806
+ window_size=window_size,
807
+ mlp_ratio=self.mlp_ratio,
808
+ qkv_bias=qkv_bias,
809
+ qk_scale=qk_scale,
810
+ drop=drop_rate,
811
+ attn_drop=attn_drop_rate,
812
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
813
+ norm_layer=norm_layer,
814
+ downsample=None,
815
+ use_checkpoint=use_checkpoint,
816
+ img_size=img_size,
817
+ patch_size=patch_size,
818
+ resi_connection=resi_connection)
819
+ self.layers.append(layer)
820
+ self.norm = norm_layer(self.num_features)
821
+
822
+ # build the last conv layer in deep feature extraction
823
+ if resi_connection == '1conv':
824
+ self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
825
+ elif resi_connection == '3conv':
826
+ # to save parameters and memory
827
+ self.conv_after_body = nn.Sequential(
828
+ nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
829
+ nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True),
830
+ nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
831
+
832
+ # ------------------------- 3, high quality image reconstruction ------------------------- #
833
+ if self.upsampler == 'pixelshuffle':
834
+ # for classical SR
835
+ self.conv_before_upsample = nn.Sequential(
836
+ nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
837
+ self.upsample = Upsample(upscale, num_feat)
838
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
839
+ elif self.upsampler == 'pixelshuffledirect':
840
+ # for lightweight SR (to save parameters)
841
+ self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
842
+ (patches_resolution[0], patches_resolution[1]))
843
+ elif self.upsampler == 'nearest+conv':
844
+ # for real-world SR (less artifacts)
845
+ assert self.upscale == 4, 'only support x4 now.'
846
+ self.conv_before_upsample = nn.Sequential(
847
+ nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
848
+ self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
849
+ self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
850
+ self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
851
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
852
+ self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
853
+ else:
854
+ # for image denoising and JPEG compression artifact reduction
855
+ self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
856
+
857
+ self.apply(self._init_weights)
858
+
859
+ def _init_weights(self, m):
860
+ if isinstance(m, nn.Linear):
861
+ trunc_normal_(m.weight, std=.02)
862
+ if isinstance(m, nn.Linear) and m.bias is not None:
863
+ nn.init.constant_(m.bias, 0)
864
+ elif isinstance(m, nn.LayerNorm):
865
+ nn.init.constant_(m.bias, 0)
866
+ nn.init.constant_(m.weight, 1.0)
867
+
868
+ @torch.jit.ignore
869
+ def no_weight_decay(self):
870
+ return {'absolute_pos_embed'}
871
+
872
+ @torch.jit.ignore
873
+ def no_weight_decay_keywords(self):
874
+ return {'relative_position_bias_table'}
875
+
876
+ def forward_features(self, x):
877
+ x_size = (x.shape[2], x.shape[3])
878
+ x = self.patch_embed(x)
879
+ if self.ape:
880
+ x = x + self.absolute_pos_embed
881
+ x = self.pos_drop(x)
882
+
883
+ for layer in self.layers:
884
+ x = layer(x, x_size)
885
+
886
+ x = self.norm(x) # b seq_len c
887
+ x = self.patch_unembed(x, x_size)
888
+
889
+ return x
890
+
891
+ def forward(self, x):
892
+ self.mean = self.mean.type_as(x)
893
+ x = (x - self.mean) * self.img_range
894
+
895
+ if self.upsampler == 'pixelshuffle':
896
+ # for classical SR
897
+ x = self.conv_first(x)
898
+ x = self.conv_after_body(self.forward_features(x)) + x
899
+ x = self.conv_before_upsample(x)
900
+ x = self.conv_last(self.upsample(x))
901
+ elif self.upsampler == 'pixelshuffledirect':
902
+ # for lightweight SR
903
+ x = self.conv_first(x)
904
+ x = self.conv_after_body(self.forward_features(x)) + x
905
+ x = self.upsample(x)
906
+ elif self.upsampler == 'nearest+conv':
907
+ # for real-world SR
908
+ x = self.conv_first(x)
909
+ x = self.conv_after_body(self.forward_features(x)) + x
910
+ x = self.conv_before_upsample(x)
911
+ x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
912
+ x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
913
+ x = self.conv_last(self.lrelu(self.conv_hr(x)))
914
+ else:
915
+ # for image denoising and JPEG compression artifact reduction
916
+ x_first = self.conv_first(x)
917
+ res = self.conv_after_body(self.forward_features(x_first)) + x_first
918
+ x = x + self.conv_last(res)
919
+
920
+ x = x / self.img_range + self.mean
921
+
922
+ return x
923
+
924
+ def flops(self):
925
+ flops = 0
926
+ h, w = self.patches_resolution
927
+ flops += h * w * 3 * self.embed_dim * 9
928
+ flops += self.patch_embed.flops()
929
+ for layer in self.layers:
930
+ flops += layer.flops()
931
+ flops += h * w * 3 * self.embed_dim * self.embed_dim
932
+ flops += self.upsample.flops()
933
+ return flops
934
+
935
+
936
+ if __name__ == '__main__':
937
+ upscale = 4
938
+ window_size = 8
939
+ height = (1024 // upscale // window_size + 1) * window_size
940
+ width = (720 // upscale // window_size + 1) * window_size
941
+ model = SwinIR(
942
+ upscale=2,
943
+ img_size=(height, width),
944
+ window_size=window_size,
945
+ img_range=1.,
946
+ depths=[6, 6, 6, 6],
947
+ embed_dim=60,
948
+ num_heads=[6, 6, 6, 6],
949
+ mlp_ratio=2,
950
+ upsampler='pixelshuffledirect')
951
+ print(model)
952
+ print(height, width, model.flops() / 1e9)
953
+
954
+ x = torch.randn((1, 3, height, width))
955
+ x = model(x)
956
+ print(x.shape)
StableSR/basicsr/archs/tof_arch.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+
5
+ from basicsr.utils.registry import ARCH_REGISTRY
6
+ from .arch_util import flow_warp
7
+
8
+
9
+ class BasicModule(nn.Module):
10
+ """Basic module of SPyNet.
11
+
12
+ Note that unlike the architecture in spynet_arch.py, the basic module
13
+ here contains batch normalization.
14
+ """
15
+
16
+ def __init__(self):
17
+ super(BasicModule, self).__init__()
18
+ self.basic_module = nn.Sequential(
19
+ nn.Conv2d(in_channels=8, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False),
20
+ nn.BatchNorm2d(32), nn.ReLU(inplace=True),
21
+ nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, stride=1, padding=3, bias=False),
22
+ nn.BatchNorm2d(64), nn.ReLU(inplace=True),
23
+ nn.Conv2d(in_channels=64, out_channels=32, kernel_size=7, stride=1, padding=3, bias=False),
24
+ nn.BatchNorm2d(32), nn.ReLU(inplace=True),
25
+ nn.Conv2d(in_channels=32, out_channels=16, kernel_size=7, stride=1, padding=3, bias=False),
26
+ nn.BatchNorm2d(16), nn.ReLU(inplace=True),
27
+ nn.Conv2d(in_channels=16, out_channels=2, kernel_size=7, stride=1, padding=3))
28
+
29
+ def forward(self, tensor_input):
30
+ """
31
+ Args:
32
+ tensor_input (Tensor): Input tensor with shape (b, 8, h, w).
33
+ 8 channels contain:
34
+ [reference image (3), neighbor image (3), initial flow (2)].
35
+
36
+ Returns:
37
+ Tensor: Estimated flow with shape (b, 2, h, w)
38
+ """
39
+ return self.basic_module(tensor_input)
40
+
41
+
42
+ class SPyNetTOF(nn.Module):
43
+ """SPyNet architecture for TOF.
44
+
45
+ Note that this implementation is specifically for TOFlow. Please use :file:`spynet_arch.py` for general use.
46
+ They differ in the following aspects:
47
+
48
+ 1. The basic modules here contain BatchNorm.
49
+ 2. Normalization and denormalization are not done here, as they are done in TOFlow.
50
+
51
+ ``Paper: Optical Flow Estimation using a Spatial Pyramid Network``
52
+
53
+ Reference: https://github.com/Coldog2333/pytoflow
54
+
55
+ Args:
56
+ load_path (str): Path for pretrained SPyNet. Default: None.
57
+ """
58
+
59
+ def __init__(self, load_path=None):
60
+ super(SPyNetTOF, self).__init__()
61
+
62
+ self.basic_module = nn.ModuleList([BasicModule() for _ in range(4)])
63
+ if load_path:
64
+ self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params'])
65
+
66
+ def forward(self, ref, supp):
67
+ """
68
+ Args:
69
+ ref (Tensor): Reference image with shape of (b, 3, h, w).
70
+ supp: The supporting image to be warped: (b, 3, h, w).
71
+
72
+ Returns:
73
+ Tensor: Estimated optical flow: (b, 2, h, w).
74
+ """
75
+ num_batches, _, h, w = ref.size()
76
+ ref = [ref]
77
+ supp = [supp]
78
+
79
+ # generate downsampled frames
80
+ for _ in range(3):
81
+ ref.insert(0, F.avg_pool2d(input=ref[0], kernel_size=2, stride=2, count_include_pad=False))
82
+ supp.insert(0, F.avg_pool2d(input=supp[0], kernel_size=2, stride=2, count_include_pad=False))
83
+
84
+ # flow computation
85
+ flow = ref[0].new_zeros(num_batches, 2, h // 16, w // 16)
86
+ for i in range(4):
87
+ flow_up = F.interpolate(input=flow, scale_factor=2, mode='bilinear', align_corners=True) * 2.0
88
+ flow = flow_up + self.basic_module[i](
89
+ torch.cat([ref[i], flow_warp(supp[i], flow_up.permute(0, 2, 3, 1)), flow_up], 1))
90
+ return flow
91
+
92
+
93
+ @ARCH_REGISTRY.register()
94
+ class TOFlow(nn.Module):
95
+ """PyTorch implementation of TOFlow.
96
+
97
+ In TOFlow, the LR frames are pre-upsampled and have the same size with the GT frames.
98
+
99
+ ``Paper: Video Enhancement with Task-Oriented Flow``
100
+
101
+ Reference: https://github.com/anchen1011/toflow
102
+
103
+ Reference: https://github.com/Coldog2333/pytoflow
104
+
105
+ Args:
106
+ adapt_official_weights (bool): Whether to adapt the weights translated
107
+ from the official implementation. Set to false if you want to
108
+ train from scratch. Default: False
109
+ """
110
+
111
+ def __init__(self, adapt_official_weights=False):
112
+ super(TOFlow, self).__init__()
113
+ self.adapt_official_weights = adapt_official_weights
114
+ self.ref_idx = 0 if adapt_official_weights else 3
115
+
116
+ self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
117
+ self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
118
+
119
+ # flow estimation module
120
+ self.spynet = SPyNetTOF()
121
+
122
+ # reconstruction module
123
+ self.conv_1 = nn.Conv2d(3 * 7, 64, 9, 1, 4)
124
+ self.conv_2 = nn.Conv2d(64, 64, 9, 1, 4)
125
+ self.conv_3 = nn.Conv2d(64, 64, 1)
126
+ self.conv_4 = nn.Conv2d(64, 3, 1)
127
+
128
+ # activation function
129
+ self.relu = nn.ReLU(inplace=True)
130
+
131
+ def normalize(self, img):
132
+ return (img - self.mean) / self.std
133
+
134
+ def denormalize(self, img):
135
+ return img * self.std + self.mean
136
+
137
+ def forward(self, lrs):
138
+ """
139
+ Args:
140
+ lrs: Input lr frames: (b, 7, 3, h, w).
141
+
142
+ Returns:
143
+ Tensor: SR frame: (b, 3, h, w).
144
+ """
145
+ # In the official implementation, the 0-th frame is the reference frame
146
+ if self.adapt_official_weights:
147
+ lrs = lrs[:, [3, 0, 1, 2, 4, 5, 6], :, :, :]
148
+
149
+ num_batches, num_lrs, _, h, w = lrs.size()
150
+
151
+ lrs = self.normalize(lrs.view(-1, 3, h, w))
152
+ lrs = lrs.view(num_batches, num_lrs, 3, h, w)
153
+
154
+ lr_ref = lrs[:, self.ref_idx, :, :, :]
155
+ lr_aligned = []
156
+ for i in range(7): # 7 frames
157
+ if i == self.ref_idx:
158
+ lr_aligned.append(lr_ref)
159
+ else:
160
+ lr_supp = lrs[:, i, :, :, :]
161
+ flow = self.spynet(lr_ref, lr_supp)
162
+ lr_aligned.append(flow_warp(lr_supp, flow.permute(0, 2, 3, 1)))
163
+
164
+ # reconstruction
165
+ hr = torch.stack(lr_aligned, dim=1)
166
+ hr = hr.view(num_batches, -1, h, w)
167
+ hr = self.relu(self.conv_1(hr))
168
+ hr = self.relu(self.conv_2(hr))
169
+ hr = self.relu(self.conv_3(hr))
170
+ hr = self.conv_4(hr) + lr_ref
171
+
172
+ return self.denormalize(hr)
StableSR/basicsr/archs/vgg_arch.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from collections import OrderedDict
4
+ from torch import nn as nn
5
+ from torchvision.models import vgg as vgg
6
+
7
+ from basicsr.utils.registry import ARCH_REGISTRY
8
+
9
+ VGG_PRETRAIN_PATH = 'experiments/pretrained_models/vgg19-dcbb9e9d.pth'
10
+ NAMES = {
11
+ 'vgg11': [
12
+ 'conv1_1', 'relu1_1', 'pool1', 'conv2_1', 'relu2_1', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2',
13
+ 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2',
14
+ 'pool5'
15
+ ],
16
+ 'vgg13': [
17
+ 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
18
+ 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'pool4',
19
+ 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'pool5'
20
+ ],
21
+ 'vgg16': [
22
+ 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
23
+ 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2',
24
+ 'relu4_2', 'conv4_3', 'relu4_3', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3',
25
+ 'pool5'
26
+ ],
27
+ 'vgg19': [
28
+ 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
29
+ 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1',
30
+ 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1',
31
+ 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4', 'pool5'
32
+ ]
33
+ }
34
+
35
+
36
+ def insert_bn(names):
37
+ """Insert bn layer after each conv.
38
+
39
+ Args:
40
+ names (list): The list of layer names.
41
+
42
+ Returns:
43
+ list: The list of layer names with bn layers.
44
+ """
45
+ names_bn = []
46
+ for name in names:
47
+ names_bn.append(name)
48
+ if 'conv' in name:
49
+ position = name.replace('conv', '')
50
+ names_bn.append('bn' + position)
51
+ return names_bn
52
+
53
+
54
+ @ARCH_REGISTRY.register()
55
+ class VGGFeatureExtractor(nn.Module):
56
+ """VGG network for feature extraction.
57
+
58
+ In this implementation, we allow users to choose whether use normalization
59
+ in the input feature and the type of vgg network. Note that the pretrained
60
+ path must fit the vgg type.
61
+
62
+ Args:
63
+ layer_name_list (list[str]): Forward function returns the corresponding
64
+ features according to the layer_name_list.
65
+ Example: {'relu1_1', 'relu2_1', 'relu3_1'}.
66
+ vgg_type (str): Set the type of vgg network. Default: 'vgg19'.
67
+ use_input_norm (bool): If True, normalize the input image. Importantly,
68
+ the input feature must in the range [0, 1]. Default: True.
69
+ range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
70
+ Default: False.
71
+ requires_grad (bool): If true, the parameters of VGG network will be
72
+ optimized. Default: False.
73
+ remove_pooling (bool): If true, the max pooling operations in VGG net
74
+ will be removed. Default: False.
75
+ pooling_stride (int): The stride of max pooling operation. Default: 2.
76
+ """
77
+
78
+ def __init__(self,
79
+ layer_name_list,
80
+ vgg_type='vgg19',
81
+ use_input_norm=True,
82
+ range_norm=False,
83
+ requires_grad=False,
84
+ remove_pooling=False,
85
+ pooling_stride=2):
86
+ super(VGGFeatureExtractor, self).__init__()
87
+
88
+ self.layer_name_list = layer_name_list
89
+ self.use_input_norm = use_input_norm
90
+ self.range_norm = range_norm
91
+
92
+ self.names = NAMES[vgg_type.replace('_bn', '')]
93
+ if 'bn' in vgg_type:
94
+ self.names = insert_bn(self.names)
95
+
96
+ # only borrow layers that will be used to avoid unused params
97
+ max_idx = 0
98
+ for v in layer_name_list:
99
+ idx = self.names.index(v)
100
+ if idx > max_idx:
101
+ max_idx = idx
102
+
103
+ if os.path.exists(VGG_PRETRAIN_PATH):
104
+ vgg_net = getattr(vgg, vgg_type)(pretrained=False)
105
+ state_dict = torch.load(VGG_PRETRAIN_PATH, map_location=lambda storage, loc: storage)
106
+ vgg_net.load_state_dict(state_dict)
107
+ else:
108
+ vgg_net = getattr(vgg, vgg_type)(pretrained=True)
109
+
110
+ features = vgg_net.features[:max_idx + 1]
111
+
112
+ modified_net = OrderedDict()
113
+ for k, v in zip(self.names, features):
114
+ if 'pool' in k:
115
+ # if remove_pooling is true, pooling operation will be removed
116
+ if remove_pooling:
117
+ continue
118
+ else:
119
+ # in some cases, we may want to change the default stride
120
+ modified_net[k] = nn.MaxPool2d(kernel_size=2, stride=pooling_stride)
121
+ else:
122
+ modified_net[k] = v
123
+
124
+ self.vgg_net = nn.Sequential(modified_net)
125
+
126
+ if not requires_grad:
127
+ self.vgg_net.eval()
128
+ for param in self.parameters():
129
+ param.requires_grad = False
130
+ else:
131
+ self.vgg_net.train()
132
+ for param in self.parameters():
133
+ param.requires_grad = True
134
+
135
+ if self.use_input_norm:
136
+ # the mean is for image with range [0, 1]
137
+ self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
138
+ # the std is for image with range [0, 1]
139
+ self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
140
+
141
+ def forward(self, x):
142
+ """Forward function.
143
+
144
+ Args:
145
+ x (Tensor): Input tensor with shape (n, c, h, w).
146
+
147
+ Returns:
148
+ Tensor: Forward results.
149
+ """
150
+ if self.range_norm:
151
+ x = (x + 1) / 2
152
+ if self.use_input_norm:
153
+ x = (x - self.mean) / self.std
154
+
155
+ output = {}
156
+ for key, layer in self.vgg_net._modules.items():
157
+ x = layer(x)
158
+ if key in self.layer_name_list:
159
+ output[key] = x.clone()
160
+
161
+ return output
StableSR/basicsr/data/__init__.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ import numpy as np
3
+ import random
4
+ import torch
5
+ import torch.utils.data
6
+ from copy import deepcopy
7
+ from functools import partial
8
+ from os import path as osp
9
+
10
+ from basicsr.data.prefetch_dataloader import PrefetchDataLoader
11
+ from basicsr.utils import get_root_logger, scandir
12
+ from basicsr.utils.dist_util import get_dist_info
13
+ from basicsr.utils.registry import DATASET_REGISTRY
14
+
15
+ __all__ = ['build_dataset', 'build_dataloader']
16
+
17
+ # automatically scan and import dataset modules for registry
18
+ # scan all the files under the data folder with '_dataset' in file names
19
+ data_folder = osp.dirname(osp.abspath(__file__))
20
+ dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
21
+ # import all the dataset modules
22
+ _dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames]
23
+
24
+
25
+ def build_dataset(dataset_opt):
26
+ """Build dataset from options.
27
+
28
+ Args:
29
+ dataset_opt (dict): Configuration for dataset. It must contain:
30
+ name (str): Dataset name.
31
+ type (str): Dataset type.
32
+ """
33
+ dataset_opt = deepcopy(dataset_opt)
34
+ dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt)
35
+ logger = get_root_logger()
36
+ logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} is built.')
37
+ return dataset
38
+
39
+
40
+ def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None):
41
+ """Build dataloader.
42
+
43
+ Args:
44
+ dataset (torch.utils.data.Dataset): Dataset.
45
+ dataset_opt (dict): Dataset options. It contains the following keys:
46
+ phase (str): 'train' or 'val'.
47
+ num_worker_per_gpu (int): Number of workers for each GPU.
48
+ batch_size_per_gpu (int): Training batch size for each GPU.
49
+ num_gpu (int): Number of GPUs. Used only in the train phase.
50
+ Default: 1.
51
+ dist (bool): Whether in distributed training. Used only in the train
52
+ phase. Default: False.
53
+ sampler (torch.utils.data.sampler): Data sampler. Default: None.
54
+ seed (int | None): Seed. Default: None
55
+ """
56
+ phase = dataset_opt['phase']
57
+ rank, _ = get_dist_info()
58
+ if phase == 'train':
59
+ if dist: # distributed training
60
+ batch_size = dataset_opt['batch_size_per_gpu']
61
+ num_workers = dataset_opt['num_worker_per_gpu']
62
+ else: # non-distributed training
63
+ multiplier = 1 if num_gpu == 0 else num_gpu
64
+ batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
65
+ num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
66
+ dataloader_args = dict(
67
+ dataset=dataset,
68
+ batch_size=batch_size,
69
+ shuffle=False,
70
+ num_workers=num_workers,
71
+ sampler=sampler,
72
+ drop_last=True)
73
+ if sampler is None:
74
+ dataloader_args['shuffle'] = True
75
+ dataloader_args['worker_init_fn'] = partial(
76
+ worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None
77
+ elif phase in ['val', 'test']: # validation
78
+ dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
79
+ else:
80
+ raise ValueError(f"Wrong dataset phase: {phase}. Supported ones are 'train', 'val' and 'test'.")
81
+
82
+ dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)
83
+ dataloader_args['persistent_workers'] = dataset_opt.get('persistent_workers', False)
84
+
85
+ prefetch_mode = dataset_opt.get('prefetch_mode')
86
+ if prefetch_mode == 'cpu': # CPUPrefetcher
87
+ num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
88
+ logger = get_root_logger()
89
+ logger.info(f'Use {prefetch_mode} prefetch dataloader: num_prefetch_queue = {num_prefetch_queue}')
90
+ return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args)
91
+ else:
92
+ # prefetch_mode=None: Normal dataloader
93
+ # prefetch_mode='cuda': dataloader for CUDAPrefetcher
94
+ return torch.utils.data.DataLoader(**dataloader_args)
95
+
96
+
97
+ def worker_init_fn(worker_id, num_workers, rank, seed):
98
+ # Set the worker seed to num_workers * rank + worker_id + seed
99
+ worker_seed = num_workers * rank + worker_id + seed
100
+ np.random.seed(worker_seed)
101
+ random.seed(worker_seed)
StableSR/basicsr/data/data_sampler.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch.utils.data.sampler import Sampler
4
+
5
+
6
+ class EnlargedSampler(Sampler):
7
+ """Sampler that restricts data loading to a subset of the dataset.
8
+
9
+ Modified from torch.utils.data.distributed.DistributedSampler
10
+ Support enlarging the dataset for iteration-based training, for saving
11
+ time when restart the dataloader after each epoch
12
+
13
+ Args:
14
+ dataset (torch.utils.data.Dataset): Dataset used for sampling.
15
+ num_replicas (int | None): Number of processes participating in
16
+ the training. It is usually the world_size.
17
+ rank (int | None): Rank of the current process within num_replicas.
18
+ ratio (int): Enlarging ratio. Default: 1.
19
+ """
20
+
21
+ def __init__(self, dataset, num_replicas, rank, ratio=1):
22
+ self.dataset = dataset
23
+ self.num_replicas = num_replicas
24
+ self.rank = rank
25
+ self.epoch = 0
26
+ self.num_samples = math.ceil(len(self.dataset) * ratio / self.num_replicas)
27
+ self.total_size = self.num_samples * self.num_replicas
28
+
29
+ def __iter__(self):
30
+ # deterministically shuffle based on epoch
31
+ g = torch.Generator()
32
+ g.manual_seed(self.epoch)
33
+ indices = torch.randperm(self.total_size, generator=g).tolist()
34
+
35
+ dataset_size = len(self.dataset)
36
+ indices = [v % dataset_size for v in indices]
37
+
38
+ # subsample
39
+ indices = indices[self.rank:self.total_size:self.num_replicas]
40
+ assert len(indices) == self.num_samples
41
+
42
+ return iter(indices)
43
+
44
+ def __len__(self):
45
+ return self.num_samples
46
+
47
+ def set_epoch(self, epoch):
48
+ self.epoch = epoch
StableSR/basicsr/data/data_util.py ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+ from os import path as osp
5
+ from torch.nn import functional as F
6
+
7
+ from basicsr.data.transforms import mod_crop
8
+ from basicsr.utils import img2tensor, scandir
9
+
10
+
11
+ def read_img_seq(path, require_mod_crop=False, scale=1, return_imgname=False):
12
+ """Read a sequence of images from a given folder path.
13
+
14
+ Args:
15
+ path (list[str] | str): List of image paths or image folder path.
16
+ require_mod_crop (bool): Require mod crop for each image.
17
+ Default: False.
18
+ scale (int): Scale factor for mod_crop. Default: 1.
19
+ return_imgname(bool): Whether return image names. Default False.
20
+
21
+ Returns:
22
+ Tensor: size (t, c, h, w), RGB, [0, 1].
23
+ list[str]: Returned image name list.
24
+ """
25
+ if isinstance(path, list):
26
+ img_paths = path
27
+ else:
28
+ img_paths = sorted(list(scandir(path, full_path=True)))
29
+ imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths]
30
+
31
+ if require_mod_crop:
32
+ imgs = [mod_crop(img, scale) for img in imgs]
33
+ imgs = img2tensor(imgs, bgr2rgb=True, float32=True)
34
+ imgs = torch.stack(imgs, dim=0)
35
+
36
+ if return_imgname:
37
+ imgnames = [osp.splitext(osp.basename(path))[0] for path in img_paths]
38
+ return imgs, imgnames
39
+ else:
40
+ return imgs
41
+
42
+
43
+ def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'):
44
+ """Generate an index list for reading `num_frames` frames from a sequence
45
+ of images.
46
+
47
+ Args:
48
+ crt_idx (int): Current center index.
49
+ max_frame_num (int): Max number of the sequence of images (from 1).
50
+ num_frames (int): Reading num_frames frames.
51
+ padding (str): Padding mode, one of
52
+ 'replicate' | 'reflection' | 'reflection_circle' | 'circle'
53
+ Examples: current_idx = 0, num_frames = 5
54
+ The generated frame indices under different padding mode:
55
+ replicate: [0, 0, 0, 1, 2]
56
+ reflection: [2, 1, 0, 1, 2]
57
+ reflection_circle: [4, 3, 0, 1, 2]
58
+ circle: [3, 4, 0, 1, 2]
59
+
60
+ Returns:
61
+ list[int]: A list of indices.
62
+ """
63
+ assert num_frames % 2 == 1, 'num_frames should be an odd number.'
64
+ assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.'
65
+
66
+ max_frame_num = max_frame_num - 1 # start from 0
67
+ num_pad = num_frames // 2
68
+
69
+ indices = []
70
+ for i in range(crt_idx - num_pad, crt_idx + num_pad + 1):
71
+ if i < 0:
72
+ if padding == 'replicate':
73
+ pad_idx = 0
74
+ elif padding == 'reflection':
75
+ pad_idx = -i
76
+ elif padding == 'reflection_circle':
77
+ pad_idx = crt_idx + num_pad - i
78
+ else:
79
+ pad_idx = num_frames + i
80
+ elif i > max_frame_num:
81
+ if padding == 'replicate':
82
+ pad_idx = max_frame_num
83
+ elif padding == 'reflection':
84
+ pad_idx = max_frame_num * 2 - i
85
+ elif padding == 'reflection_circle':
86
+ pad_idx = (crt_idx - num_pad) - (i - max_frame_num)
87
+ else:
88
+ pad_idx = i - num_frames
89
+ else:
90
+ pad_idx = i
91
+ indices.append(pad_idx)
92
+ return indices
93
+
94
+
95
+ def paired_paths_from_lmdb(folders, keys):
96
+ """Generate paired paths from lmdb files.
97
+
98
+ Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is:
99
+
100
+ ::
101
+
102
+ lq.lmdb
103
+ ├── data.mdb
104
+ ├── lock.mdb
105
+ ├── meta_info.txt
106
+
107
+ The data.mdb and lock.mdb are standard lmdb files and you can refer to
108
+ https://lmdb.readthedocs.io/en/release/ for more details.
109
+
110
+ The meta_info.txt is a specified txt file to record the meta information
111
+ of our datasets. It will be automatically created when preparing
112
+ datasets by our provided dataset tools.
113
+ Each line in the txt file records
114
+ 1)image name (with extension),
115
+ 2)image shape,
116
+ 3)compression level, separated by a white space.
117
+ Example: `baboon.png (120,125,3) 1`
118
+
119
+ We use the image name without extension as the lmdb key.
120
+ Note that we use the same key for the corresponding lq and gt images.
121
+
122
+ Args:
123
+ folders (list[str]): A list of folder path. The order of list should
124
+ be [input_folder, gt_folder].
125
+ keys (list[str]): A list of keys identifying folders. The order should
126
+ be in consistent with folders, e.g., ['lq', 'gt'].
127
+ Note that this key is different from lmdb keys.
128
+
129
+ Returns:
130
+ list[str]: Returned path list.
131
+ """
132
+ assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
133
+ f'But got {len(folders)}')
134
+ assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
135
+ input_folder, gt_folder = folders
136
+ input_key, gt_key = keys
137
+
138
+ if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')):
139
+ raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb '
140
+ f'formats. But received {input_key}: {input_folder}; '
141
+ f'{gt_key}: {gt_folder}')
142
+ # ensure that the two meta_info files are the same
143
+ with open(osp.join(input_folder, 'meta_info.txt')) as fin:
144
+ input_lmdb_keys = [line.split('.')[0] for line in fin]
145
+ with open(osp.join(gt_folder, 'meta_info.txt')) as fin:
146
+ gt_lmdb_keys = [line.split('.')[0] for line in fin]
147
+ if set(input_lmdb_keys) != set(gt_lmdb_keys):
148
+ raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.')
149
+ else:
150
+ paths = []
151
+ for lmdb_key in sorted(input_lmdb_keys):
152
+ paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)]))
153
+ return paths
154
+
155
+
156
+ def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl):
157
+ """Generate paired paths from an meta information file.
158
+
159
+ Each line in the meta information file contains the image names and
160
+ image shape (usually for gt), separated by a white space.
161
+
162
+ Example of an meta information file:
163
+ ```
164
+ 0001_s001.png (480,480,3)
165
+ 0001_s002.png (480,480,3)
166
+ ```
167
+
168
+ Args:
169
+ folders (list[str]): A list of folder path. The order of list should
170
+ be [input_folder, gt_folder].
171
+ keys (list[str]): A list of keys identifying folders. The order should
172
+ be in consistent with folders, e.g., ['lq', 'gt'].
173
+ meta_info_file (str): Path to the meta information file.
174
+ filename_tmpl (str): Template for each filename. Note that the
175
+ template excludes the file extension. Usually the filename_tmpl is
176
+ for files in the input folder.
177
+
178
+ Returns:
179
+ list[str]: Returned path list.
180
+ """
181
+ assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
182
+ f'But got {len(folders)}')
183
+ assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
184
+ input_folder, gt_folder = folders
185
+ input_key, gt_key = keys
186
+
187
+ with open(meta_info_file, 'r') as fin:
188
+ gt_names = [line.strip().split(' ')[0] for line in fin]
189
+
190
+ paths = []
191
+ for gt_name in gt_names:
192
+ basename, ext = osp.splitext(osp.basename(gt_name))
193
+ input_name = f'{filename_tmpl.format(basename)}{ext}'
194
+ input_path = osp.join(input_folder, input_name)
195
+ gt_path = osp.join(gt_folder, gt_name)
196
+ paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
197
+ return paths
198
+
199
+ def paired_paths_from_meta_info_file_2(folders, keys, meta_info_file, filename_tmpl):
200
+ """Generate paired paths from an meta information file.
201
+
202
+ Each line in the meta information file contains the image names and
203
+ image shape (usually for gt), separated by a white space.
204
+
205
+ Example of an meta information file:
206
+ ```
207
+ 0001_s001.png (480,480,3)
208
+ 0001_s002.png (480,480,3)
209
+ ```
210
+
211
+ Args:
212
+ folders (list[str]): A list of folder path. The order of list should
213
+ be [input_folder, gt_folder].
214
+ keys (list[str]): A list of keys identifying folders. The order should
215
+ be in consistent with folders, e.g., ['lq', 'gt'].
216
+ meta_info_file (str): Path to the meta information file.
217
+ filename_tmpl (str): Template for each filename. Note that the
218
+ template excludes the file extension. Usually the filename_tmpl is
219
+ for files in the input folder.
220
+
221
+ Returns:
222
+ list[str]: Returned path list.
223
+ """
224
+ assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
225
+ f'But got {len(folders)}')
226
+ assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
227
+ input_folder, gt_folder = folders
228
+ input_key, gt_key = keys
229
+
230
+ with open(meta_info_file, 'r') as fin:
231
+ gt_names = [line.strip().split(' ')[0] for line in fin]
232
+ with open(meta_info_file, 'r') as fin:
233
+ input_names = [line.strip().split(' ')[1] for line in fin]
234
+ paths = []
235
+ for i in range(len(gt_names)):
236
+ gt_name = gt_names[i]
237
+ lq_name = input_names[i]
238
+ basename, ext = osp.splitext(osp.basename(gt_name))
239
+ basename = gt_name[:-len(ext)]
240
+ gt_path = osp.join(gt_folder, gt_name)
241
+ basename, ext = osp.splitext(osp.basename(lq_name))
242
+ basename = lq_name[:-len(ext)]
243
+ input_path = osp.join(input_folder, lq_name)
244
+ paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
245
+ return paths
246
+
247
+ def paired_paths_from_folder(folders, keys, filename_tmpl):
248
+ """Generate paired paths from folders.
249
+
250
+ Args:
251
+ folders (list[str]): A list of folder path. The order of list should
252
+ be [input_folder, gt_folder].
253
+ keys (list[str]): A list of keys identifying folders. The order should
254
+ be in consistent with folders, e.g., ['lq', 'gt'].
255
+ filename_tmpl (str): Template for each filename. Note that the
256
+ template excludes the file extension. Usually the filename_tmpl is
257
+ for files in the input folder.
258
+
259
+ Returns:
260
+ list[str]: Returned path list.
261
+ """
262
+ assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
263
+ f'But got {len(folders)}')
264
+ assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
265
+ input_folder, gt_folder = folders
266
+ input_key, gt_key = keys
267
+
268
+ input_paths = list(scandir(input_folder))
269
+ gt_paths = list(scandir(gt_folder))
270
+ assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: '
271
+ f'{len(input_paths)}, {len(gt_paths)}.')
272
+ paths = []
273
+ for gt_path in gt_paths:
274
+ basename, ext = osp.splitext(osp.basename(gt_path))
275
+ input_name = f'{filename_tmpl.format(basename)}{ext}'
276
+ input_path = osp.join(input_folder, input_name)
277
+ assert input_name in input_paths, f'{input_name} is not in {input_key}_paths.'
278
+ gt_path = osp.join(gt_folder, gt_path)
279
+ paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
280
+ return paths
281
+
282
+
283
+ def paths_from_folder(folder):
284
+ """Generate paths from folder.
285
+
286
+ Args:
287
+ folder (str): Folder path.
288
+
289
+ Returns:
290
+ list[str]: Returned path list.
291
+ """
292
+
293
+ paths = list(scandir(folder))
294
+ paths = [osp.join(folder, path) for path in paths]
295
+ return paths
296
+
297
+
298
+ def paths_from_lmdb(folder):
299
+ """Generate paths from lmdb.
300
+
301
+ Args:
302
+ folder (str): Folder path.
303
+
304
+ Returns:
305
+ list[str]: Returned path list.
306
+ """
307
+ if not folder.endswith('.lmdb'):
308
+ raise ValueError(f'Folder {folder}folder should in lmdb format.')
309
+ with open(osp.join(folder, 'meta_info.txt')) as fin:
310
+ paths = [line.split('.')[0] for line in fin]
311
+ return paths
312
+
313
+
314
+ def generate_gaussian_kernel(kernel_size=13, sigma=1.6):
315
+ """Generate Gaussian kernel used in `duf_downsample`.
316
+
317
+ Args:
318
+ kernel_size (int): Kernel size. Default: 13.
319
+ sigma (float): Sigma of the Gaussian kernel. Default: 1.6.
320
+
321
+ Returns:
322
+ np.array: The Gaussian kernel.
323
+ """
324
+ from scipy.ndimage import filters as filters
325
+ kernel = np.zeros((kernel_size, kernel_size))
326
+ # set element at the middle to one, a dirac delta
327
+ kernel[kernel_size // 2, kernel_size // 2] = 1
328
+ # gaussian-smooth the dirac, resulting in a gaussian filter
329
+ return filters.gaussian_filter(kernel, sigma)
330
+
331
+
332
+ def duf_downsample(x, kernel_size=13, scale=4):
333
+ """Downsamping with Gaussian kernel used in the DUF official code.
334
+
335
+ Args:
336
+ x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w).
337
+ kernel_size (int): Kernel size. Default: 13.
338
+ scale (int): Downsampling factor. Supported scale: (2, 3, 4).
339
+ Default: 4.
340
+
341
+ Returns:
342
+ Tensor: DUF downsampled frames.
343
+ """
344
+ assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.'
345
+
346
+ squeeze_flag = False
347
+ if x.ndim == 4:
348
+ squeeze_flag = True
349
+ x = x.unsqueeze(0)
350
+ b, t, c, h, w = x.size()
351
+ x = x.view(-1, 1, h, w)
352
+ pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2
353
+ x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect')
354
+
355
+ gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale)
356
+ gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0)
357
+ x = F.conv2d(x, gaussian_filter, stride=scale)
358
+ x = x[:, :, 2:-2, 2:-2]
359
+ x = x.view(b, t, c, x.size(2), x.size(3))
360
+ if squeeze_flag:
361
+ x = x.squeeze(0)
362
+ return x
StableSR/basicsr/data/degradations.py ADDED
@@ -0,0 +1,935 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import random
5
+ import torch
6
+ from scipy import special
7
+ from scipy.stats import multivariate_normal
8
+ from torchvision.transforms.functional_tensor import rgb_to_grayscale
9
+
10
+ # -------------------------------------------------------------------- #
11
+ # --------------------------- blur kernels --------------------------- #
12
+ # -------------------------------------------------------------------- #
13
+
14
+
15
+ # --------------------------- util functions --------------------------- #
16
+ def sigma_matrix2(sig_x, sig_y, theta):
17
+ """Calculate the rotated sigma matrix (two dimensional matrix).
18
+
19
+ Args:
20
+ sig_x (float):
21
+ sig_y (float):
22
+ theta (float): Radian measurement.
23
+
24
+ Returns:
25
+ ndarray: Rotated sigma matrix.
26
+ """
27
+ d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]])
28
+ u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
29
+ return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
30
+
31
+
32
+ def mesh_grid(kernel_size):
33
+ """Generate the mesh grid, centering at zero.
34
+
35
+ Args:
36
+ kernel_size (int):
37
+
38
+ Returns:
39
+ xy (ndarray): with the shape (kernel_size, kernel_size, 2)
40
+ xx (ndarray): with the shape (kernel_size, kernel_size)
41
+ yy (ndarray): with the shape (kernel_size, kernel_size)
42
+ """
43
+ ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
44
+ xx, yy = np.meshgrid(ax, ax)
45
+ xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size,
46
+ 1))).reshape(kernel_size, kernel_size, 2)
47
+ return xy, xx, yy
48
+
49
+
50
+ def pdf2(sigma_matrix, grid):
51
+ """Calculate PDF of the bivariate Gaussian distribution.
52
+
53
+ Args:
54
+ sigma_matrix (ndarray): with the shape (2, 2)
55
+ grid (ndarray): generated by :func:`mesh_grid`,
56
+ with the shape (K, K, 2), K is the kernel size.
57
+
58
+ Returns:
59
+ kernel (ndarrray): un-normalized kernel.
60
+ """
61
+ inverse_sigma = np.linalg.inv(sigma_matrix)
62
+ kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
63
+ return kernel
64
+
65
+
66
+ def cdf2(d_matrix, grid):
67
+ """Calculate the CDF of the standard bivariate Gaussian distribution.
68
+ Used in skewed Gaussian distribution.
69
+
70
+ Args:
71
+ d_matrix (ndarrasy): skew matrix.
72
+ grid (ndarray): generated by :func:`mesh_grid`,
73
+ with the shape (K, K, 2), K is the kernel size.
74
+
75
+ Returns:
76
+ cdf (ndarray): skewed cdf.
77
+ """
78
+ rv = multivariate_normal([0, 0], [[1, 0], [0, 1]])
79
+ grid = np.dot(grid, d_matrix)
80
+ cdf = rv.cdf(grid)
81
+ return cdf
82
+
83
+
84
+ def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True):
85
+ """Generate a bivariate isotropic or anisotropic Gaussian kernel.
86
+
87
+ In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
88
+
89
+ Args:
90
+ kernel_size (int):
91
+ sig_x (float):
92
+ sig_y (float):
93
+ theta (float): Radian measurement.
94
+ grid (ndarray, optional): generated by :func:`mesh_grid`,
95
+ with the shape (K, K, 2), K is the kernel size. Default: None
96
+ isotropic (bool):
97
+
98
+ Returns:
99
+ kernel (ndarray): normalized kernel.
100
+ """
101
+ if grid is None:
102
+ grid, _, _ = mesh_grid(kernel_size)
103
+ if isotropic:
104
+ sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
105
+ else:
106
+ sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
107
+ kernel = pdf2(sigma_matrix, grid)
108
+ kernel = kernel / np.sum(kernel)
109
+ return kernel
110
+
111
+
112
+ def bivariate_generalized_Gaussian(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
113
+ """Generate a bivariate generalized Gaussian kernel.
114
+
115
+ ``Paper: Parameter Estimation For Multivariate Generalized Gaussian Distributions``
116
+
117
+ In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
118
+
119
+ Args:
120
+ kernel_size (int):
121
+ sig_x (float):
122
+ sig_y (float):
123
+ theta (float): Radian measurement.
124
+ beta (float): shape parameter, beta = 1 is the normal distribution.
125
+ grid (ndarray, optional): generated by :func:`mesh_grid`,
126
+ with the shape (K, K, 2), K is the kernel size. Default: None
127
+
128
+ Returns:
129
+ kernel (ndarray): normalized kernel.
130
+ """
131
+ if grid is None:
132
+ grid, _, _ = mesh_grid(kernel_size)
133
+ if isotropic:
134
+ sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
135
+ else:
136
+ sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
137
+ inverse_sigma = np.linalg.inv(sigma_matrix)
138
+ kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
139
+ kernel = kernel / np.sum(kernel)
140
+ return kernel
141
+
142
+
143
+ def bivariate_plateau(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
144
+ """Generate a plateau-like anisotropic kernel.
145
+
146
+ 1 / (1+x^(beta))
147
+
148
+ Reference: https://stats.stackexchange.com/questions/203629/is-there-a-plateau-shaped-distribution
149
+
150
+ In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
151
+
152
+ Args:
153
+ kernel_size (int):
154
+ sig_x (float):
155
+ sig_y (float):
156
+ theta (float): Radian measurement.
157
+ beta (float): shape parameter, beta = 1 is the normal distribution.
158
+ grid (ndarray, optional): generated by :func:`mesh_grid`,
159
+ with the shape (K, K, 2), K is the kernel size. Default: None
160
+
161
+ Returns:
162
+ kernel (ndarray): normalized kernel.
163
+ """
164
+ if grid is None:
165
+ grid, _, _ = mesh_grid(kernel_size)
166
+ if isotropic:
167
+ sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
168
+ else:
169
+ sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
170
+ inverse_sigma = np.linalg.inv(sigma_matrix)
171
+ kernel = np.reciprocal(np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1)
172
+ kernel = kernel / np.sum(kernel)
173
+ return kernel
174
+
175
+
176
+ def random_bivariate_Gaussian(kernel_size,
177
+ sigma_x_range,
178
+ sigma_y_range,
179
+ rotation_range,
180
+ noise_range=None,
181
+ isotropic=True,
182
+ return_sigma=False):
183
+ """Randomly generate bivariate isotropic or anisotropic Gaussian kernels.
184
+
185
+ In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
186
+
187
+ Args:
188
+ kernel_size (int):
189
+ sigma_x_range (tuple): [0.6, 5]
190
+ sigma_y_range (tuple): [0.6, 5]
191
+ rotation range (tuple): [-math.pi, math.pi]
192
+ noise_range(tuple, optional): multiplicative kernel noise,
193
+ [0.75, 1.25]. Default: None
194
+
195
+ Returns:
196
+ kernel (ndarray):
197
+ """
198
+ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
199
+ assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
200
+ sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
201
+ if isotropic is False:
202
+ assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
203
+ assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
204
+ sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
205
+ rotation = np.random.uniform(rotation_range[0], rotation_range[1])
206
+ else:
207
+ sigma_y = sigma_x
208
+ rotation = 0
209
+
210
+ kernel = bivariate_Gaussian(kernel_size, sigma_x, sigma_y, rotation, isotropic=isotropic)
211
+
212
+ # add multiplicative noise
213
+ if noise_range is not None:
214
+ assert noise_range[0] < noise_range[1], 'Wrong noise range.'
215
+ noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
216
+ kernel = kernel * noise
217
+ kernel = kernel / np.sum(kernel)
218
+ if not return_sigma:
219
+ return kernel
220
+ else:
221
+ return kernel, [sigma_x, sigma_y]
222
+
223
+
224
+ def random_bivariate_generalized_Gaussian(kernel_size,
225
+ sigma_x_range,
226
+ sigma_y_range,
227
+ rotation_range,
228
+ beta_range,
229
+ noise_range=None,
230
+ isotropic=True,
231
+ return_sigma=False):
232
+ """Randomly generate bivariate generalized Gaussian kernels.
233
+
234
+ In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
235
+
236
+ Args:
237
+ kernel_size (int):
238
+ sigma_x_range (tuple): [0.6, 5]
239
+ sigma_y_range (tuple): [0.6, 5]
240
+ rotation range (tuple): [-math.pi, math.pi]
241
+ beta_range (tuple): [0.5, 8]
242
+ noise_range(tuple, optional): multiplicative kernel noise,
243
+ [0.75, 1.25]. Default: None
244
+
245
+ Returns:
246
+ kernel (ndarray):
247
+ """
248
+ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
249
+ assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
250
+ sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
251
+ if isotropic is False:
252
+ assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
253
+ assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
254
+ sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
255
+ rotation = np.random.uniform(rotation_range[0], rotation_range[1])
256
+ else:
257
+ sigma_y = sigma_x
258
+ rotation = 0
259
+
260
+ # assume beta_range[0] < 1 < beta_range[1]
261
+ if np.random.uniform() < 0.5:
262
+ beta = np.random.uniform(beta_range[0], 1)
263
+ else:
264
+ beta = np.random.uniform(1, beta_range[1])
265
+
266
+ kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
267
+
268
+ # add multiplicative noise
269
+ if noise_range is not None:
270
+ assert noise_range[0] < noise_range[1], 'Wrong noise range.'
271
+ noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
272
+ kernel = kernel * noise
273
+ kernel = kernel / np.sum(kernel)
274
+ if not return_sigma:
275
+ return kernel
276
+ else:
277
+ return kernel, [sigma_x, sigma_y]
278
+
279
+
280
+ def random_bivariate_plateau(kernel_size,
281
+ sigma_x_range,
282
+ sigma_y_range,
283
+ rotation_range,
284
+ beta_range,
285
+ noise_range=None,
286
+ isotropic=True,
287
+ return_sigma=False):
288
+ """Randomly generate bivariate plateau kernels.
289
+
290
+ In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
291
+
292
+ Args:
293
+ kernel_size (int):
294
+ sigma_x_range (tuple): [0.6, 5]
295
+ sigma_y_range (tuple): [0.6, 5]
296
+ rotation range (tuple): [-math.pi/2, math.pi/2]
297
+ beta_range (tuple): [1, 4]
298
+ noise_range(tuple, optional): multiplicative kernel noise,
299
+ [0.75, 1.25]. Default: None
300
+
301
+ Returns:
302
+ kernel (ndarray):
303
+ """
304
+ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
305
+ assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
306
+ sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
307
+ if isotropic is False:
308
+ assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
309
+ assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
310
+ sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
311
+ rotation = np.random.uniform(rotation_range[0], rotation_range[1])
312
+ else:
313
+ sigma_y = sigma_x
314
+ rotation = 0
315
+
316
+ # TODO: this may be not proper
317
+ if np.random.uniform() < 0.5:
318
+ beta = np.random.uniform(beta_range[0], 1)
319
+ else:
320
+ beta = np.random.uniform(1, beta_range[1])
321
+
322
+ kernel = bivariate_plateau(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
323
+ # add multiplicative noise
324
+ if noise_range is not None:
325
+ assert noise_range[0] < noise_range[1], 'Wrong noise range.'
326
+ noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
327
+ kernel = kernel * noise
328
+ kernel = kernel / np.sum(kernel)
329
+
330
+ if not return_sigma:
331
+ return kernel
332
+ else:
333
+ return kernel, [sigma_x, sigma_y]
334
+
335
+
336
+ def random_mixed_kernels(kernel_list,
337
+ kernel_prob,
338
+ kernel_size=21,
339
+ sigma_x_range=(0.6, 5),
340
+ sigma_y_range=(0.6, 5),
341
+ rotation_range=(-math.pi, math.pi),
342
+ betag_range=(0.5, 8),
343
+ betap_range=(0.5, 8),
344
+ noise_range=None,
345
+ return_sigma=False):
346
+ """Randomly generate mixed kernels.
347
+
348
+ Args:
349
+ kernel_list (tuple): a list name of kernel types,
350
+ support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso',
351
+ 'plateau_aniso']
352
+ kernel_prob (tuple): corresponding kernel probability for each
353
+ kernel type
354
+ kernel_size (int):
355
+ sigma_x_range (tuple): [0.6, 5]
356
+ sigma_y_range (tuple): [0.6, 5]
357
+ rotation range (tuple): [-math.pi, math.pi]
358
+ beta_range (tuple): [0.5, 8]
359
+ noise_range(tuple, optional): multiplicative kernel noise,
360
+ [0.75, 1.25]. Default: None
361
+
362
+ Returns:
363
+ kernel (ndarray):
364
+ """
365
+ kernel_type = random.choices(kernel_list, kernel_prob)[0]
366
+ if not return_sigma:
367
+ if kernel_type == 'iso':
368
+ kernel = random_bivariate_Gaussian(
369
+ kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True, return_sigma=return_sigma)
370
+ elif kernel_type == 'aniso':
371
+ kernel = random_bivariate_Gaussian(
372
+ kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False, return_sigma=return_sigma)
373
+ elif kernel_type == 'generalized_iso':
374
+ kernel = random_bivariate_generalized_Gaussian(
375
+ kernel_size,
376
+ sigma_x_range,
377
+ sigma_y_range,
378
+ rotation_range,
379
+ betag_range,
380
+ noise_range=noise_range,
381
+ isotropic=True,
382
+ return_sigma=return_sigma)
383
+ elif kernel_type == 'generalized_aniso':
384
+ kernel = random_bivariate_generalized_Gaussian(
385
+ kernel_size,
386
+ sigma_x_range,
387
+ sigma_y_range,
388
+ rotation_range,
389
+ betag_range,
390
+ noise_range=noise_range,
391
+ isotropic=False,
392
+ return_sigma=return_sigma)
393
+ elif kernel_type == 'plateau_iso':
394
+ kernel = random_bivariate_plateau(
395
+ kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True, return_sigma=return_sigma)
396
+ elif kernel_type == 'plateau_aniso':
397
+ kernel = random_bivariate_plateau(
398
+ kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False, return_sigma=return_sigma)
399
+ return kernel
400
+ else:
401
+ if kernel_type == 'iso':
402
+ kernel, sigma_list = random_bivariate_Gaussian(
403
+ kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True, return_sigma=return_sigma)
404
+ elif kernel_type == 'aniso':
405
+ kernel, sigma_list = random_bivariate_Gaussian(
406
+ kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False, return_sigma=return_sigma)
407
+ elif kernel_type == 'generalized_iso':
408
+ kernel, sigma_list = random_bivariate_generalized_Gaussian(
409
+ kernel_size,
410
+ sigma_x_range,
411
+ sigma_y_range,
412
+ rotation_range,
413
+ betag_range,
414
+ noise_range=noise_range,
415
+ isotropic=True,
416
+ return_sigma=return_sigma)
417
+ elif kernel_type == 'generalized_aniso':
418
+ kernel, sigma_list = random_bivariate_generalized_Gaussian(
419
+ kernel_size,
420
+ sigma_x_range,
421
+ sigma_y_range,
422
+ rotation_range,
423
+ betag_range,
424
+ noise_range=noise_range,
425
+ isotropic=False,
426
+ return_sigma=return_sigma)
427
+ elif kernel_type == 'plateau_iso':
428
+ kernel, sigma_list = random_bivariate_plateau(
429
+ kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True, return_sigma=return_sigma)
430
+ elif kernel_type == 'plateau_aniso':
431
+ kernel, sigma_list = random_bivariate_plateau(
432
+ kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False, return_sigma=return_sigma)
433
+ return kernel, sigma_list
434
+
435
+
436
+ np.seterr(divide='ignore', invalid='ignore')
437
+
438
+
439
+ def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0):
440
+ """2D sinc filter
441
+
442
+ Reference: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
443
+
444
+ Args:
445
+ cutoff (float): cutoff frequency in radians (pi is max)
446
+ kernel_size (int): horizontal and vertical size, must be odd.
447
+ pad_to (int): pad kernel size to desired size, must be odd or zero.
448
+ """
449
+ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
450
+ kernel = np.fromfunction(
451
+ lambda x, y: cutoff * special.j1(cutoff * np.sqrt(
452
+ (x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)) / (2 * np.pi * np.sqrt(
453
+ (x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)), [kernel_size, kernel_size])
454
+ kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff**2 / (4 * np.pi)
455
+ kernel = kernel / np.sum(kernel)
456
+ if pad_to > kernel_size:
457
+ pad_size = (pad_to - kernel_size) // 2
458
+ kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
459
+ return kernel
460
+
461
+
462
+ # ------------------------------------------------------------- #
463
+ # --------------------------- noise --------------------------- #
464
+ # ------------------------------------------------------------- #
465
+
466
+ # ----------------------- Gaussian Noise ----------------------- #
467
+
468
+
469
+ def generate_gaussian_noise(img, sigma=10, gray_noise=False):
470
+ """Generate Gaussian noise.
471
+
472
+ Args:
473
+ img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
474
+ sigma (float): Noise scale (measured in range 255). Default: 10.
475
+
476
+ Returns:
477
+ (Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
478
+ float32.
479
+ """
480
+ if gray_noise:
481
+ noise = np.float32(np.random.randn(*(img.shape[0:2]))) * sigma / 255.
482
+ noise = np.expand_dims(noise, axis=2).repeat(3, axis=2)
483
+ else:
484
+ noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255.
485
+ return noise
486
+
487
+
488
+ def add_gaussian_noise(img, sigma=10, clip=True, rounds=False, gray_noise=False):
489
+ """Add Gaussian noise.
490
+
491
+ Args:
492
+ img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
493
+ sigma (float): Noise scale (measured in range 255). Default: 10.
494
+
495
+ Returns:
496
+ (Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
497
+ float32.
498
+ """
499
+ noise = generate_gaussian_noise(img, sigma, gray_noise)
500
+ out = img + noise
501
+ if clip and rounds:
502
+ out = np.clip((out * 255.0).round(), 0, 255) / 255.
503
+ elif clip:
504
+ out = np.clip(out, 0, 1)
505
+ elif rounds:
506
+ out = (out * 255.0).round() / 255.
507
+ return out
508
+
509
+
510
+ def generate_gaussian_noise_pt(img, sigma=10, gray_noise=0):
511
+ """Add Gaussian noise (PyTorch version).
512
+
513
+ Args:
514
+ img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
515
+ scale (float | Tensor): Noise scale. Default: 1.0.
516
+
517
+ Returns:
518
+ (Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
519
+ float32.
520
+ """
521
+ b, _, h, w = img.size()
522
+ if not isinstance(sigma, (float, int)):
523
+ sigma = sigma.view(img.size(0), 1, 1, 1)
524
+ if isinstance(gray_noise, (float, int)):
525
+ cal_gray_noise = gray_noise > 0
526
+ else:
527
+ gray_noise = gray_noise.view(b, 1, 1, 1)
528
+ cal_gray_noise = torch.sum(gray_noise) > 0
529
+
530
+ if cal_gray_noise:
531
+ noise_gray = torch.randn(*img.size()[2:4], dtype=img.dtype, device=img.device) * sigma / 255.
532
+ noise_gray = noise_gray.view(b, 1, h, w)
533
+
534
+ # always calculate color noise
535
+ noise = torch.randn(*img.size(), dtype=img.dtype, device=img.device) * sigma / 255.
536
+
537
+ if cal_gray_noise:
538
+ noise = noise * (1 - gray_noise) + noise_gray * gray_noise
539
+ return noise
540
+
541
+
542
+ def add_gaussian_noise_pt(img, sigma=10, gray_noise=0, clip=True, rounds=False):
543
+ """Add Gaussian noise (PyTorch version).
544
+
545
+ Args:
546
+ img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
547
+ scale (float | Tensor): Noise scale. Default: 1.0.
548
+
549
+ Returns:
550
+ (Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
551
+ float32.
552
+ """
553
+ noise = generate_gaussian_noise_pt(img, sigma, gray_noise)
554
+ out = img + noise
555
+ if clip and rounds:
556
+ out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
557
+ elif clip:
558
+ out = torch.clamp(out, 0, 1)
559
+ elif rounds:
560
+ out = (out * 255.0).round() / 255.
561
+ return out
562
+
563
+
564
+ # ----------------------- Random Gaussian Noise ----------------------- #
565
+ def random_generate_gaussian_noise(img, sigma_range=(0, 10), gray_prob=0, return_sigma=False):
566
+ sigma = np.random.uniform(sigma_range[0], sigma_range[1])
567
+ if np.random.uniform() < gray_prob:
568
+ gray_noise = True
569
+ else:
570
+ gray_noise = False
571
+ if return_sigma:
572
+ return generate_gaussian_noise(img, sigma, gray_noise), sigma
573
+ else:
574
+ return generate_gaussian_noise(img, sigma, gray_noise)
575
+
576
+
577
+ def random_add_gaussian_noise(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False, return_sigma=False):
578
+ if return_sigma:
579
+ noise, sigma = random_generate_gaussian_noise(img, sigma_range, gray_prob, return_sigma=return_sigma)
580
+ else:
581
+ noise = random_generate_gaussian_noise(img, sigma_range, gray_prob, return_sigma=return_sigma)
582
+ out = img + noise
583
+ if clip and rounds:
584
+ out = np.clip((out * 255.0).round(), 0, 255) / 255.
585
+ elif clip:
586
+ out = np.clip(out, 0, 1)
587
+ elif rounds:
588
+ out = (out * 255.0).round() / 255.
589
+ if return_sigma:
590
+ return out, sigma
591
+ else:
592
+ return out
593
+
594
+
595
+ def random_generate_gaussian_noise_pt(img, sigma_range=(0, 10), gray_prob=0):
596
+ sigma = torch.rand(
597
+ img.size(0), dtype=img.dtype, device=img.device) * (sigma_range[1] - sigma_range[0]) + sigma_range[0]
598
+ gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
599
+ gray_noise = (gray_noise < gray_prob).float()
600
+ return generate_gaussian_noise_pt(img, sigma, gray_noise)
601
+
602
+
603
+ def random_add_gaussian_noise_pt(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
604
+ noise = random_generate_gaussian_noise_pt(img, sigma_range, gray_prob)
605
+ out = img + noise
606
+ if clip and rounds:
607
+ out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
608
+ elif clip:
609
+ out = torch.clamp(out, 0, 1)
610
+ elif rounds:
611
+ out = (out * 255.0).round() / 255.
612
+ return out
613
+
614
+ # ----------------------- Poisson (Shot) Noise ----------------------- #
615
+
616
+
617
+ def generate_poisson_noise(img, scale=1.0, gray_noise=False):
618
+ """Generate poisson noise.
619
+
620
+ Reference: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/noise.py#L37-L219
621
+
622
+ Args:
623
+ img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
624
+ scale (float): Noise scale. Default: 1.0.
625
+ gray_noise (bool): Whether generate gray noise. Default: False.
626
+
627
+ Returns:
628
+ (Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
629
+ float32.
630
+ """
631
+ if gray_noise:
632
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
633
+ # round and clip image for counting vals correctly
634
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
635
+ vals = len(np.unique(img))
636
+ vals = 2**np.ceil(np.log2(vals))
637
+ out = np.float32(np.random.poisson(img * vals) / float(vals))
638
+ noise = out - img
639
+ if gray_noise:
640
+ noise = np.repeat(noise[:, :, np.newaxis], 3, axis=2)
641
+ return noise * scale
642
+
643
+
644
+ def add_poisson_noise(img, scale=1.0, clip=True, rounds=False, gray_noise=False):
645
+ """Add poisson noise.
646
+
647
+ Args:
648
+ img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
649
+ scale (float): Noise scale. Default: 1.0.
650
+ gray_noise (bool): Whether generate gray noise. Default: False.
651
+
652
+ Returns:
653
+ (Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
654
+ float32.
655
+ """
656
+ noise = generate_poisson_noise(img, scale, gray_noise)
657
+ out = img + noise
658
+ if clip and rounds:
659
+ out = np.clip((out * 255.0).round(), 0, 255) / 255.
660
+ elif clip:
661
+ out = np.clip(out, 0, 1)
662
+ elif rounds:
663
+ out = (out * 255.0).round() / 255.
664
+ return out
665
+
666
+
667
+ def generate_poisson_noise_pt(img, scale=1.0, gray_noise=0):
668
+ """Generate a batch of poisson noise (PyTorch version)
669
+
670
+ Args:
671
+ img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
672
+ scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
673
+ Default: 1.0.
674
+ gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
675
+ 0 for False, 1 for True. Default: 0.
676
+
677
+ Returns:
678
+ (Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
679
+ float32.
680
+ """
681
+ b, _, h, w = img.size()
682
+ if isinstance(gray_noise, (float, int)):
683
+ cal_gray_noise = gray_noise > 0
684
+ else:
685
+ gray_noise = gray_noise.view(b, 1, 1, 1)
686
+ cal_gray_noise = torch.sum(gray_noise) > 0
687
+ if cal_gray_noise:
688
+ img_gray = rgb_to_grayscale(img, num_output_channels=1)
689
+ # round and clip image for counting vals correctly
690
+ img_gray = torch.clamp((img_gray * 255.0).round(), 0, 255) / 255.
691
+ # use for-loop to get the unique values for each sample
692
+ vals_list = [len(torch.unique(img_gray[i, :, :, :])) for i in range(b)]
693
+ vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
694
+ vals = img_gray.new_tensor(vals_list).view(b, 1, 1, 1)
695
+ out = torch.poisson(img_gray * vals) / vals
696
+ noise_gray = out - img_gray
697
+ noise_gray = noise_gray.expand(b, 3, h, w)
698
+
699
+ # always calculate color noise
700
+ # round and clip image for counting vals correctly
701
+ img = torch.clamp((img * 255.0).round(), 0, 255) / 255.
702
+ # use for-loop to get the unique values for each sample
703
+ vals_list = [len(torch.unique(img[i, :, :, :])) for i in range(b)]
704
+ vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
705
+ vals = img.new_tensor(vals_list).view(b, 1, 1, 1)
706
+ out = torch.poisson(img * vals) / vals
707
+ noise = out - img
708
+ if cal_gray_noise:
709
+ noise = noise * (1 - gray_noise) + noise_gray * gray_noise
710
+ if not isinstance(scale, (float, int)):
711
+ scale = scale.view(b, 1, 1, 1)
712
+ return noise * scale
713
+
714
+
715
+ def add_poisson_noise_pt(img, scale=1.0, clip=True, rounds=False, gray_noise=0):
716
+ """Add poisson noise to a batch of images (PyTorch version).
717
+
718
+ Args:
719
+ img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
720
+ scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
721
+ Default: 1.0.
722
+ gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
723
+ 0 for False, 1 for True. Default: 0.
724
+
725
+ Returns:
726
+ (Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
727
+ float32.
728
+ """
729
+ noise = generate_poisson_noise_pt(img, scale, gray_noise)
730
+ out = img + noise
731
+ if clip and rounds:
732
+ out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
733
+ elif clip:
734
+ out = torch.clamp(out, 0, 1)
735
+ elif rounds:
736
+ out = (out * 255.0).round() / 255.
737
+ return out
738
+
739
+
740
+ # ----------------------- Random Poisson (Shot) Noise ----------------------- #
741
+
742
+
743
+ def random_generate_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0):
744
+ scale = np.random.uniform(scale_range[0], scale_range[1])
745
+ if np.random.uniform() < gray_prob:
746
+ gray_noise = True
747
+ else:
748
+ gray_noise = False
749
+ return generate_poisson_noise(img, scale, gray_noise)
750
+
751
+
752
+ def random_add_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
753
+ noise = random_generate_poisson_noise(img, scale_range, gray_prob)
754
+ out = img + noise
755
+ if clip and rounds:
756
+ out = np.clip((out * 255.0).round(), 0, 255) / 255.
757
+ elif clip:
758
+ out = np.clip(out, 0, 1)
759
+ elif rounds:
760
+ out = (out * 255.0).round() / 255.
761
+ return out
762
+
763
+
764
+ def random_generate_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0):
765
+ scale = torch.rand(
766
+ img.size(0), dtype=img.dtype, device=img.device) * (scale_range[1] - scale_range[0]) + scale_range[0]
767
+ gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
768
+ gray_noise = (gray_noise < gray_prob).float()
769
+ return generate_poisson_noise_pt(img, scale, gray_noise)
770
+
771
+
772
+ def random_add_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
773
+ noise = random_generate_poisson_noise_pt(img, scale_range, gray_prob)
774
+ out = img + noise
775
+ if clip and rounds:
776
+ out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
777
+ elif clip:
778
+ out = torch.clamp(out, 0, 1)
779
+ elif rounds:
780
+ out = (out * 255.0).round() / 255.
781
+ return out
782
+
783
+ # ----------------------- Random speckle Noise ----------------------- #
784
+
785
+ def random_add_speckle_noise(imgs, speckle_std):
786
+ std_range = speckle_std
787
+ std_l = std_range[0]
788
+ std_r = std_range[1]
789
+ mean=0
790
+ std=random.uniform(std_l/255.,std_r/255.)
791
+
792
+ outputs = []
793
+ for img in imgs:
794
+ gauss=np.random.normal(loc=mean,scale=std,size=img.shape)
795
+ noisy=img+gauss*img
796
+ noisy=np.clip(noisy,0,1).astype(np.float32)
797
+
798
+ outputs.append(noisy)
799
+
800
+ return outputs
801
+
802
+
803
+ def random_add_speckle_noise_pt(img, speckle_std):
804
+ std_range = speckle_std
805
+ std_l = std_range[0]
806
+ std_r = std_range[1]
807
+ mean=0
808
+ std=random.uniform(std_l/255.,std_r/255.)
809
+ gauss=torch.normal(mean=mean,std=std,size=img.size()).to(img.device)
810
+ noisy=img+gauss*img
811
+ noisy=torch.clamp(noisy,0,1)
812
+ return noisy
813
+
814
+ # ----------------------- Random saltpepper Noise ----------------------- #
815
+
816
+ def random_add_saltpepper_noise(imgs, saltpepper_amount, saltpepper_svsp):
817
+ p_range = saltpepper_amount
818
+ p = random.uniform(p_range[0], p_range[1])
819
+ q_range = saltpepper_svsp
820
+ q = random.uniform(q_range[0], q_range[1])
821
+
822
+ outputs = []
823
+ for img in imgs:
824
+ out = img.copy()
825
+ flipped = np.random.choice([True, False], size=img.shape,
826
+ p=[p, 1 - p])
827
+ salted = np.random.choice([True, False], size=img.shape,
828
+ p=[q, 1 - q])
829
+ peppered = ~salted
830
+ out[flipped & salted] = 1
831
+ out[flipped & peppered] = 0.
832
+ noisy = np.clip(out, 0, 1).astype(np.float32)
833
+
834
+ outputs.append(noisy)
835
+
836
+ return outputs
837
+
838
+ def random_add_saltpepper_noise_pt(imgs, saltpepper_amount, saltpepper_svsp):
839
+ p_range = saltpepper_amount
840
+ p = random.uniform(p_range[0], p_range[1])
841
+ q_range = saltpepper_svsp
842
+ q = random.uniform(q_range[0], q_range[1])
843
+
844
+ imgs = imgs.permute(0,2,3,1)
845
+
846
+ outputs = []
847
+ for i in range(imgs.size(0)):
848
+ img = imgs[i]
849
+ out = img.clone()
850
+ flipped = np.random.choice([True, False], size=img.shape,
851
+ p=[p, 1 - p])
852
+ salted = np.random.choice([True, False], size=img.shape,
853
+ p=[q, 1 - q])
854
+ peppered = ~salted
855
+ temp = flipped & salted
856
+ out[flipped & salted] = 1
857
+ out[flipped & peppered] = 0.
858
+ noisy = torch.clamp(out, 0, 1)
859
+
860
+ outputs.append(noisy.permute(2,0,1))
861
+ if len(outputs)>1:
862
+ return torch.cat(outputs, dim=0)
863
+ else:
864
+ return outputs[0].unsqueeze(0)
865
+
866
+ # ----------------------- Random screen Noise ----------------------- #
867
+
868
+ def random_add_screen_noise(imgs, linewidth, space):
869
+ #screen_noise = np.random.uniform() < self.params['noise_prob'][0]
870
+ linewidth = linewidth
871
+ linewidth = int(np.random.uniform(linewidth[0], linewidth[1]))
872
+ space = space
873
+ space = int(np.random.uniform(space[0], space[1]))
874
+ center_color = [213,230,230] # RGB
875
+ outputs = []
876
+ for img in imgs:
877
+ noise = img.copy()
878
+
879
+ tmp_mask = np.zeros((img.shape[1], img.shape[0]), dtype=np.float32)
880
+ for i in range(0, img.shape[0], int((space+linewidth))):
881
+ tmp_mask[:, i:(i+linewidth)] = 1
882
+ colour_masks = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.float32)
883
+ colour_masks[:,:,0] = (center_color[0] + np.random.uniform(-20, 20))/255.
884
+ colour_masks[:,:,1] = (center_color[1] + np.random.uniform(0, 20))/255.
885
+ colour_masks[:,:,2] = (center_color[2] + np.random.uniform(0, 20))/255.
886
+ noise_color = cv2.addWeighted(noise, 0.6, colour_masks, 0.4, 0.0)
887
+ noise = noise*(1-(tmp_mask[:,:,np.newaxis])) + noise_color*(tmp_mask[:,:,np.newaxis])
888
+
889
+ outputs.append(noise)
890
+
891
+ return outputs
892
+
893
+
894
+ # ------------------------------------------------------------------------ #
895
+ # --------------------------- JPEG compression --------------------------- #
896
+ # ------------------------------------------------------------------------ #
897
+
898
+
899
+ def add_jpg_compression(img, quality=90):
900
+ """Add JPG compression artifacts.
901
+
902
+ Args:
903
+ img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
904
+ quality (float): JPG compression quality. 0 for lowest quality, 100 for
905
+ best quality. Default: 90.
906
+
907
+ Returns:
908
+ (Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
909
+ float32.
910
+ """
911
+ img = np.clip(img, 0, 1)
912
+ encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(quality)]
913
+ _, encimg = cv2.imencode('.jpg', img * 255., encode_param)
914
+ img = np.float32(cv2.imdecode(encimg, 1)) / 255.
915
+ return img
916
+
917
+
918
+ def random_add_jpg_compression(img, quality_range=(90, 100), return_q=False):
919
+ """Randomly add JPG compression artifacts.
920
+
921
+ Args:
922
+ img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
923
+ quality_range (tuple[float] | list[float]): JPG compression quality
924
+ range. 0 for lowest quality, 100 for best quality.
925
+ Default: (90, 100).
926
+
927
+ Returns:
928
+ (Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
929
+ float32.
930
+ """
931
+ quality = np.random.uniform(quality_range[0], quality_range[1])
932
+ if return_q:
933
+ return add_jpg_compression(img, quality), quality
934
+ else:
935
+ return add_jpg_compression(img, quality)
StableSR/basicsr/data/ffhq_dataset.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import time
3
+ from os import path as osp
4
+ from torch.utils import data as data
5
+ from torchvision.transforms.functional import normalize
6
+
7
+ from basicsr.data.transforms import augment
8
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
9
+ from basicsr.utils.registry import DATASET_REGISTRY
10
+
11
+
12
+ @DATASET_REGISTRY.register()
13
+ class FFHQDataset(data.Dataset):
14
+ """FFHQ dataset for StyleGAN.
15
+
16
+ Args:
17
+ opt (dict): Config for train datasets. It contains the following keys:
18
+ dataroot_gt (str): Data root path for gt.
19
+ io_backend (dict): IO backend type and other kwarg.
20
+ mean (list | tuple): Image mean.
21
+ std (list | tuple): Image std.
22
+ use_hflip (bool): Whether to horizontally flip.
23
+
24
+ """
25
+
26
+ def __init__(self, opt):
27
+ super(FFHQDataset, self).__init__()
28
+ self.opt = opt
29
+ # file client (io backend)
30
+ self.file_client = None
31
+ self.io_backend_opt = opt['io_backend']
32
+
33
+ self.gt_folder = opt['dataroot_gt']
34
+ self.mean = opt['mean']
35
+ self.std = opt['std']
36
+
37
+ if self.io_backend_opt['type'] == 'lmdb':
38
+ self.io_backend_opt['db_paths'] = self.gt_folder
39
+ if not self.gt_folder.endswith('.lmdb'):
40
+ raise ValueError("'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
41
+ with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
42
+ self.paths = [line.split('.')[0] for line in fin]
43
+ else:
44
+ # FFHQ has 70000 images in total
45
+ self.paths = [osp.join(self.gt_folder, f'{v:08d}.png') for v in range(70000)]
46
+
47
+ def __getitem__(self, index):
48
+ if self.file_client is None:
49
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
50
+
51
+ # load gt image
52
+ gt_path = self.paths[index]
53
+ # avoid errors caused by high latency in reading files
54
+ retry = 3
55
+ while retry > 0:
56
+ try:
57
+ img_bytes = self.file_client.get(gt_path)
58
+ except Exception as e:
59
+ logger = get_root_logger()
60
+ logger.warning(f'File client error: {e}, remaining retry times: {retry - 1}')
61
+ # change another file to read
62
+ index = random.randint(0, self.__len__())
63
+ gt_path = self.paths[index]
64
+ time.sleep(1) # sleep 1s for occasional server congestion
65
+ else:
66
+ break
67
+ finally:
68
+ retry -= 1
69
+ img_gt = imfrombytes(img_bytes, float32=True)
70
+
71
+ # random horizontal flip
72
+ img_gt = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False)
73
+ # BGR to RGB, HWC to CHW, numpy to tensor
74
+ img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True)
75
+ # normalize
76
+ normalize(img_gt, self.mean, self.std, inplace=True)
77
+ return {'gt': img_gt, 'gt_path': gt_path}
78
+
79
+ def __len__(self):
80
+ return len(self.paths)
StableSR/basicsr/data/ffhq_degradation_dataset.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os.path as osp
5
+ import torch
6
+ import torch.utils.data as data
7
+ import random
8
+ from basicsr.data import degradations as degradations
9
+ from basicsr.data.data_util import paths_from_folder
10
+ from basicsr.data.transforms import augment
11
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
12
+ from basicsr.utils.registry import DATASET_REGISTRY
13
+ from pathlib import Path
14
+ from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, adjust_hue, adjust_saturation,
15
+ normalize)
16
+
17
+ @DATASET_REGISTRY.register()
18
+ class FFHQDegradationDataset(data.Dataset):
19
+ """FFHQ dataset for GFPGAN.
20
+ It reads high resolution images, and then generate low-quality (LQ) images on-the-fly.
21
+ Args:
22
+ opt (dict): Config for train datasets. It contains the following keys:
23
+ dataroot_gt (str): Data root path for gt.
24
+ io_backend (dict): IO backend type and other kwarg.
25
+ mean (list | tuple): Image mean.
26
+ std (list | tuple): Image std.
27
+ use_hflip (bool): Whether to horizontally flip.
28
+ Please see more options in the codes.
29
+ """
30
+
31
+ def __init__(self, opt):
32
+ super(FFHQDegradationDataset, self).__init__()
33
+ self.opt = opt
34
+ # file client (io backend)
35
+ self.file_client = None
36
+ self.io_backend_opt = opt['io_backend']
37
+ if 'image_type' not in opt:
38
+ opt['image_type'] = 'png'
39
+
40
+ self.gt_folder = opt['dataroot_gt']
41
+ self.mean = opt['mean']
42
+ self.std = opt['std']
43
+ self.out_size = opt['out_size']
44
+
45
+ self.crop_components = opt.get('crop_components', False) # facial components
46
+ self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1) # whether enlarge eye regions
47
+
48
+ if self.crop_components:
49
+ # load component list from a pre-process pth files
50
+ self.components_list = torch.load(opt.get('component_path'))
51
+
52
+ # file client (lmdb io backend)
53
+ if self.io_backend_opt['type'] == 'lmdb':
54
+ self.io_backend_opt['db_paths'] = self.gt_folder
55
+ if not self.gt_folder.endswith('.lmdb'):
56
+ raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
57
+ with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
58
+ self.paths = [line.split('.')[0] for line in fin]
59
+ else:
60
+ # disk backend: scan file list from a folder
61
+ self.paths = self.paths = sorted([str(x) for x in Path(self.gt_folder).glob('*.'+opt['image_type'])])
62
+
63
+ # degradation configurations
64
+ self.blur_kernel_size = opt['blur_kernel_size']
65
+ self.kernel_list = opt['kernel_list']
66
+ self.kernel_prob = opt['kernel_prob']
67
+ self.blur_sigma = opt['blur_sigma']
68
+ self.downsample_range = opt['downsample_range']
69
+ self.noise_range = opt['noise_range']
70
+ self.jpeg_range = opt['jpeg_range']
71
+
72
+ # color jitter
73
+ self.color_jitter_prob = opt.get('color_jitter_prob')
74
+ self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob')
75
+ self.color_jitter_shift = opt.get('color_jitter_shift', 20)
76
+ # to gray
77
+ self.gray_prob = opt.get('gray_prob')
78
+
79
+ logger = get_root_logger()
80
+ logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]')
81
+ logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]')
82
+ logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]')
83
+ logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]')
84
+
85
+ if self.color_jitter_prob is not None:
86
+ logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}')
87
+ if self.gray_prob is not None:
88
+ logger.info(f'Use random gray. Prob: {self.gray_prob}')
89
+ self.color_jitter_shift /= 255.
90
+
91
+ @staticmethod
92
+ def color_jitter(img, shift):
93
+ """jitter color: randomly jitter the RGB values, in numpy formats"""
94
+ jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
95
+ img = img + jitter_val
96
+ img = np.clip(img, 0, 1)
97
+ return img
98
+
99
+ @staticmethod
100
+ def color_jitter_pt(img, brightness, contrast, saturation, hue):
101
+ """jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
102
+ fn_idx = torch.randperm(4)
103
+ for fn_id in fn_idx:
104
+ if fn_id == 0 and brightness is not None:
105
+ brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
106
+ img = adjust_brightness(img, brightness_factor)
107
+
108
+ if fn_id == 1 and contrast is not None:
109
+ contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
110
+ img = adjust_contrast(img, contrast_factor)
111
+
112
+ if fn_id == 2 and saturation is not None:
113
+ saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
114
+ img = adjust_saturation(img, saturation_factor)
115
+
116
+ if fn_id == 3 and hue is not None:
117
+ hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
118
+ img = adjust_hue(img, hue_factor)
119
+ return img
120
+
121
+ def get_component_coordinates(self, index, status):
122
+ """Get facial component (left_eye, right_eye, mouth) coordinates from a pre-loaded pth file"""
123
+ components_bbox = self.components_list[f'{index:08d}']
124
+ if status[0]: # hflip
125
+ # exchange right and left eye
126
+ tmp = components_bbox['left_eye']
127
+ components_bbox['left_eye'] = components_bbox['right_eye']
128
+ components_bbox['right_eye'] = tmp
129
+ # modify the width coordinate
130
+ components_bbox['left_eye'][0] = self.out_size - components_bbox['left_eye'][0]
131
+ components_bbox['right_eye'][0] = self.out_size - components_bbox['right_eye'][0]
132
+ components_bbox['mouth'][0] = self.out_size - components_bbox['mouth'][0]
133
+
134
+ # get coordinates
135
+ locations = []
136
+ for part in ['left_eye', 'right_eye', 'mouth']:
137
+ mean = components_bbox[part][0:2]
138
+ half_len = components_bbox[part][2]
139
+ if 'eye' in part:
140
+ half_len *= self.eye_enlarge_ratio
141
+ loc = np.hstack((mean - half_len + 1, mean + half_len))
142
+ loc = torch.from_numpy(loc).float()
143
+ locations.append(loc)
144
+ return locations
145
+
146
+ def __getitem__(self, index):
147
+ if self.file_client is None:
148
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
149
+
150
+ # load gt image
151
+ # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
152
+ gt_path = self.paths[index]
153
+ img_bytes = self.file_client.get(gt_path)
154
+ img_gt = imfrombytes(img_bytes, float32=True)
155
+
156
+ # random horizontal flip
157
+ img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
158
+ h, w, _ = img_gt.shape
159
+
160
+ # get facial component coordinates
161
+ if self.crop_components:
162
+ locations = self.get_component_coordinates(index, status)
163
+ loc_left_eye, loc_right_eye, loc_mouth = locations
164
+
165
+ # ------------------------ generate lq image ------------------------ #
166
+ # blur
167
+ kernel = degradations.random_mixed_kernels(
168
+ self.kernel_list,
169
+ self.kernel_prob,
170
+ self.blur_kernel_size,
171
+ self.blur_sigma,
172
+ self.blur_sigma, [-math.pi, math.pi],
173
+ noise_range=None)
174
+ img_lq = cv2.filter2D(img_gt, -1, kernel)
175
+ # downsample
176
+ scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
177
+ img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR)
178
+ # noise
179
+ if self.noise_range is not None:
180
+ img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range)
181
+ # jpeg compression
182
+ if self.jpeg_range is not None:
183
+ img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range)
184
+
185
+ # resize to original size
186
+ img_lq = cv2.resize(img_lq, (w, h), interpolation=cv2.INTER_LINEAR)
187
+
188
+ # random color jitter (only for lq)
189
+ if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
190
+ img_lq = self.color_jitter(img_lq, self.color_jitter_shift)
191
+ # random to gray (only for lq)
192
+ if self.gray_prob and np.random.uniform() < self.gray_prob:
193
+ img_lq = cv2.cvtColor(img_lq, cv2.COLOR_BGR2GRAY)
194
+ img_lq = np.tile(img_lq[:, :, None], [1, 1, 3])
195
+ if self.opt.get('gt_gray'): # whether convert GT to gray images
196
+ img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY)
197
+ img_gt = np.tile(img_gt[:, :, None], [1, 1, 3]) # repeat the color channels
198
+
199
+ # BGR to RGB, HWC to CHW, numpy to tensor
200
+ img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
201
+
202
+ # random color jitter (pytorch version) (only for lq)
203
+ if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
204
+ brightness = self.opt.get('brightness', (0.5, 1.5))
205
+ contrast = self.opt.get('contrast', (0.5, 1.5))
206
+ saturation = self.opt.get('saturation', (0, 1.5))
207
+ hue = self.opt.get('hue', (-0.1, 0.1))
208
+ img_lq = self.color_jitter_pt(img_lq, brightness, contrast, saturation, hue)
209
+
210
+ # round and clip
211
+ img_lq = torch.clamp((img_lq * 255.0).round(), 0, 255) / 255.
212
+
213
+ # normalize
214
+ normalize(img_gt, self.mean, self.std, inplace=True)
215
+ normalize(img_lq, self.mean, self.std, inplace=True)
216
+
217
+ if self.crop_components:
218
+ return_dict = {
219
+ 'lq': img_lq,
220
+ 'gt': img_gt,
221
+ 'gt_path': gt_path,
222
+ 'loc_left_eye': loc_left_eye,
223
+ 'loc_right_eye': loc_right_eye,
224
+ 'loc_mouth': loc_mouth
225
+ }
226
+ return return_dict
227
+ else:
228
+ return {'lq': img_lq, 'gt': img_gt, 'gt_path': gt_path}
229
+
230
+ def __len__(self):
231
+ return len(self.paths)
StableSR/basicsr/data/paired_image_dataset.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils import data as data
2
+ from torchvision.transforms.functional import normalize
3
+
4
+ from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb, paired_paths_from_meta_info_file, paired_paths_from_meta_info_file_2
5
+ from basicsr.data.transforms import augment, paired_random_crop
6
+ from basicsr.utils import FileClient, bgr2ycbcr, imfrombytes, img2tensor
7
+ from basicsr.utils.registry import DATASET_REGISTRY
8
+ import cv2
9
+
10
+
11
+ @DATASET_REGISTRY.register()
12
+ class PairedImageDataset(data.Dataset):
13
+ """Paired image dataset for image restoration.
14
+
15
+ Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and GT image pairs.
16
+
17
+ There are three modes:
18
+
19
+ 1. **lmdb**: Use lmdb files. If opt['io_backend'] == lmdb.
20
+ 2. **meta_info_file**: Use meta information file to generate paths. \
21
+ If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
22
+ 3. **folder**: Scan folders to generate paths. The rest.
23
+
24
+ Args:
25
+ opt (dict): Config for train datasets. It contains the following keys:
26
+ dataroot_gt (str): Data root path for gt.
27
+ dataroot_lq (str): Data root path for lq.
28
+ meta_info_file (str): Path for meta information file.
29
+ io_backend (dict): IO backend type and other kwarg.
30
+ filename_tmpl (str): Template for each filename. Note that the template excludes the file extension.
31
+ Default: '{}'.
32
+ gt_size (int): Cropped patched size for gt patches.
33
+ use_hflip (bool): Use horizontal flips.
34
+ use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
35
+ scale (bool): Scale, which will be added automatically.
36
+ phase (str): 'train' or 'val'.
37
+ """
38
+
39
+ def __init__(self, opt):
40
+ super(PairedImageDataset, self).__init__()
41
+ self.opt = opt
42
+ # file client (io backend)
43
+ self.file_client = None
44
+ self.io_backend_opt = opt['io_backend']
45
+ self.mean = opt['mean'] if 'mean' in opt else None
46
+ self.std = opt['std'] if 'std' in opt else None
47
+
48
+ self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
49
+ if 'filename_tmpl' in opt:
50
+ self.filename_tmpl = opt['filename_tmpl']
51
+ else:
52
+ self.filename_tmpl = '{}'
53
+
54
+ if self.io_backend_opt['type'] == 'lmdb':
55
+ self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
56
+ self.io_backend_opt['client_keys'] = ['lq', 'gt']
57
+ self.paths = paired_paths_from_lmdb([self.lq_folder, self.gt_folder], ['lq', 'gt'])
58
+ elif 'meta_info_file' in self.opt and self.opt['meta_info_file'] is not None:
59
+ self.paths = paired_paths_from_meta_info_file_2([self.lq_folder, self.gt_folder], ['lq', 'gt'],
60
+ self.opt['meta_info_file'], self.filename_tmpl)
61
+ else:
62
+ self.paths = paired_paths_from_folder([self.lq_folder, self.gt_folder], ['lq', 'gt'], self.filename_tmpl)
63
+
64
+ def __getitem__(self, index):
65
+ if self.file_client is None:
66
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
67
+
68
+ scale = self.opt['scale']
69
+
70
+ # Load gt and lq images. Dimension order: HWC; channel order: BGR;
71
+ # image range: [0, 1], float32.
72
+ gt_path = self.paths[index]['gt_path']
73
+ img_bytes = self.file_client.get(gt_path, 'gt')
74
+ img_gt = imfrombytes(img_bytes, float32=True)
75
+ lq_path = self.paths[index]['lq_path']
76
+ img_bytes = self.file_client.get(lq_path, 'lq')
77
+ img_lq = imfrombytes(img_bytes, float32=True)
78
+
79
+ h, w = img_gt.shape[0:2]
80
+ # pad
81
+ if h < self.opt['gt_size'] or w < self.opt['gt_size']:
82
+ pad_h = max(0, self.opt['gt_size'] - h)
83
+ pad_w = max(0, self.opt['gt_size'] - w)
84
+ img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
85
+ img_lq = cv2.copyMakeBorder(img_lq, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
86
+
87
+ # augmentation for training
88
+ if self.opt['phase'] == 'train':
89
+ gt_size = self.opt['gt_size']
90
+ # random crop
91
+ img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path)
92
+ # flip, rotation
93
+ img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_hflip'], self.opt['use_rot'])
94
+
95
+ # color space transform
96
+ if 'color' in self.opt and self.opt['color'] == 'y':
97
+ img_gt = bgr2ycbcr(img_gt, y_only=True)[..., None]
98
+ img_lq = bgr2ycbcr(img_lq, y_only=True)[..., None]
99
+
100
+ # crop the unmatched GT images during validation or testing, especially for SR benchmark datasets
101
+ # TODO: It is better to update the datasets, rather than force to crop
102
+ if self.opt['phase'] != 'train':
103
+ img_gt = img_gt[0:img_lq.shape[0] * scale, 0:img_lq.shape[1] * scale, :]
104
+
105
+ # BGR to RGB, HWC to CHW, numpy to tensor
106
+ img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
107
+ # normalize
108
+ if self.mean is not None or self.std is not None:
109
+ normalize(img_lq, self.mean, self.std, inplace=True)
110
+ normalize(img_gt, self.mean, self.std, inplace=True)
111
+
112
+ return {'lq': img_lq, 'gt': img_gt, 'lq_path': lq_path, 'gt_path': gt_path}
113
+
114
+ def __len__(self):
115
+ return len(self.paths)
StableSR/basicsr/data/prefetch_dataloader.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import queue as Queue
2
+ import threading
3
+ import torch
4
+ from torch.utils.data import DataLoader
5
+
6
+
7
+ class PrefetchGenerator(threading.Thread):
8
+ """A general prefetch generator.
9
+
10
+ Reference: https://stackoverflow.com/questions/7323664/python-generator-pre-fetch
11
+
12
+ Args:
13
+ generator: Python generator.
14
+ num_prefetch_queue (int): Number of prefetch queue.
15
+ """
16
+
17
+ def __init__(self, generator, num_prefetch_queue):
18
+ threading.Thread.__init__(self)
19
+ self.queue = Queue.Queue(num_prefetch_queue)
20
+ self.generator = generator
21
+ self.daemon = True
22
+ self.start()
23
+
24
+ def run(self):
25
+ for item in self.generator:
26
+ self.queue.put(item)
27
+ self.queue.put(None)
28
+
29
+ def __next__(self):
30
+ next_item = self.queue.get()
31
+ if next_item is None:
32
+ raise StopIteration
33
+ return next_item
34
+
35
+ def __iter__(self):
36
+ return self
37
+
38
+
39
+ class PrefetchDataLoader(DataLoader):
40
+ """Prefetch version of dataloader.
41
+
42
+ Reference: https://github.com/IgorSusmelj/pytorch-styleguide/issues/5#
43
+
44
+ TODO:
45
+ Need to test on single gpu and ddp (multi-gpu). There is a known issue in
46
+ ddp.
47
+
48
+ Args:
49
+ num_prefetch_queue (int): Number of prefetch queue.
50
+ kwargs (dict): Other arguments for dataloader.
51
+ """
52
+
53
+ def __init__(self, num_prefetch_queue, **kwargs):
54
+ self.num_prefetch_queue = num_prefetch_queue
55
+ super(PrefetchDataLoader, self).__init__(**kwargs)
56
+
57
+ def __iter__(self):
58
+ return PrefetchGenerator(super().__iter__(), self.num_prefetch_queue)
59
+
60
+
61
+ class CPUPrefetcher():
62
+ """CPU prefetcher.
63
+
64
+ Args:
65
+ loader: Dataloader.
66
+ """
67
+
68
+ def __init__(self, loader):
69
+ self.ori_loader = loader
70
+ self.loader = iter(loader)
71
+
72
+ def next(self):
73
+ try:
74
+ return next(self.loader)
75
+ except StopIteration:
76
+ return None
77
+
78
+ def reset(self):
79
+ self.loader = iter(self.ori_loader)
80
+
81
+
82
+ class CUDAPrefetcher():
83
+ """CUDA prefetcher.
84
+
85
+ Reference: https://github.com/NVIDIA/apex/issues/304#
86
+
87
+ It may consume more GPU memory.
88
+
89
+ Args:
90
+ loader: Dataloader.
91
+ opt (dict): Options.
92
+ """
93
+
94
+ def __init__(self, loader, opt):
95
+ self.ori_loader = loader
96
+ self.loader = iter(loader)
97
+ self.opt = opt
98
+ self.stream = torch.cuda.Stream()
99
+ self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
100
+ self.preload()
101
+
102
+ def preload(self):
103
+ try:
104
+ self.batch = next(self.loader) # self.batch is a dict
105
+ except StopIteration:
106
+ self.batch = None
107
+ return None
108
+ # put tensors to gpu
109
+ with torch.cuda.stream(self.stream):
110
+ for k, v in self.batch.items():
111
+ if torch.is_tensor(v):
112
+ self.batch[k] = self.batch[k].to(device=self.device, non_blocking=True)
113
+
114
+ def next(self):
115
+ torch.cuda.current_stream().wait_stream(self.stream)
116
+ batch = self.batch
117
+ self.preload()
118
+ return batch
119
+
120
+ def reset(self):
121
+ self.loader = iter(self.ori_loader)
122
+ self.preload()
StableSR/basicsr/data/realesrgan_dataset.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import math
3
+ import numpy as np
4
+ import os
5
+ import os.path as osp
6
+ import random
7
+ import time
8
+ import torch
9
+ from pathlib import Path
10
+ from torch.utils import data as data
11
+
12
+ from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
13
+ from basicsr.data.transforms import augment
14
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
15
+ from basicsr.utils.registry import DATASET_REGISTRY
16
+
17
+ @DATASET_REGISTRY.register(suffix='basicsr')
18
+ class RealESRGANDataset(data.Dataset):
19
+ """Modified dataset based on the dataset used for Real-ESRGAN model:
20
+ Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
21
+
22
+ It loads gt (Ground-Truth) images, and augments them.
23
+ It also generates blur kernels and sinc kernels for generating low-quality images.
24
+ Note that the low-quality images are processed in tensors on GPUS for faster processing.
25
+
26
+ Args:
27
+ opt (dict): Config for train datasets. It contains the following keys:
28
+ dataroot_gt (str): Data root path for gt.
29
+ meta_info (str): Path for meta information file.
30
+ io_backend (dict): IO backend type and other kwarg.
31
+ use_hflip (bool): Use horizontal flips.
32
+ use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
33
+ Please see more options in the codes.
34
+ """
35
+
36
+ def __init__(self, opt):
37
+ super(RealESRGANDataset, self).__init__()
38
+ self.opt = opt
39
+ self.file_client = None
40
+ self.io_backend_opt = opt['io_backend']
41
+ if 'crop_size' in opt:
42
+ self.crop_size = opt['crop_size']
43
+ else:
44
+ self.crop_size = 512
45
+ if 'image_type' not in opt:
46
+ opt['image_type'] = 'png'
47
+
48
+ # support multiple type of data: file path and meta data, remove support of lmdb
49
+ self.paths = []
50
+ if 'meta_info' in opt:
51
+ with open(self.opt['meta_info']) as fin:
52
+ paths = [line.strip().split(' ')[0] for line in fin]
53
+ self.paths = [v for v in paths]
54
+ if 'meta_num' in opt:
55
+ self.paths = sorted(self.paths)[:opt['meta_num']]
56
+ if 'gt_path' in opt:
57
+ if isinstance(opt['gt_path'], str):
58
+ self.paths.extend(sorted([str(x) for x in Path(opt['gt_path']).glob('*.'+opt['image_type'])]))
59
+ else:
60
+ self.paths.extend(sorted([str(x) for x in Path(opt['gt_path'][0]).glob('*.'+opt['image_type'])]))
61
+ if len(opt['gt_path']) > 1:
62
+ for i in range(len(opt['gt_path'])-1):
63
+ self.paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]).glob('*.'+opt['image_type'])]))
64
+ if 'imagenet_path' in opt:
65
+ class_list = os.listdir(opt['imagenet_path'])
66
+ for class_file in class_list:
67
+ self.paths.extend(sorted([str(x) for x in Path(os.path.join(opt['imagenet_path'], class_file)).glob('*.'+'JPEG')]))
68
+ if 'face_gt_path' in opt:
69
+ if isinstance(opt['face_gt_path'], str):
70
+ face_list = sorted([str(x) for x in Path(opt['face_gt_path']).glob('*.'+opt['image_type'])])
71
+ self.paths.extend(face_list[:opt['num_face']])
72
+ else:
73
+ face_list = sorted([str(x) for x in Path(opt['face_gt_path'][0]).glob('*.'+opt['image_type'])])
74
+ self.paths.extend(face_list[:opt['num_face']])
75
+ if len(opt['face_gt_path']) > 1:
76
+ for i in range(len(opt['face_gt_path'])-1):
77
+ self.paths.extend(sorted([str(x) for x in Path(opt['face_gt_path'][0]).glob('*.'+opt['image_type'])])[:opt['num_face']])
78
+
79
+ # limit number of pictures for test
80
+ if 'num_pic' in opt:
81
+ if 'val' or 'test' in opt:
82
+ random.shuffle(self.paths)
83
+ self.paths = self.paths[:opt['num_pic']]
84
+ else:
85
+ self.paths = self.paths[:opt['num_pic']]
86
+
87
+ if 'mul_num' in opt:
88
+ self.paths = self.paths * opt['mul_num']
89
+ # print('>>>>>>>>>>>>>>>>>>>>>')
90
+ # print(self.paths)
91
+
92
+ # blur settings for the first degradation
93
+ self.blur_kernel_size = opt['blur_kernel_size']
94
+ self.kernel_list = opt['kernel_list']
95
+ self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability
96
+ self.blur_sigma = opt['blur_sigma']
97
+ self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels
98
+ self.betap_range = opt['betap_range'] # betap used in plateau blur kernels
99
+ self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters
100
+
101
+ # blur settings for the second degradation
102
+ self.blur_kernel_size2 = opt['blur_kernel_size2']
103
+ self.kernel_list2 = opt['kernel_list2']
104
+ self.kernel_prob2 = opt['kernel_prob2']
105
+ self.blur_sigma2 = opt['blur_sigma2']
106
+ self.betag_range2 = opt['betag_range2']
107
+ self.betap_range2 = opt['betap_range2']
108
+ self.sinc_prob2 = opt['sinc_prob2']
109
+
110
+ # a final sinc filter
111
+ self.final_sinc_prob = opt['final_sinc_prob']
112
+
113
+ self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
114
+ # TODO: kernel range is now hard-coded, should be in the configure file
115
+ self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
116
+ self.pulse_tensor[10, 10] = 1
117
+
118
+ def __getitem__(self, index):
119
+ if self.file_client is None:
120
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
121
+
122
+ # -------------------------------- Load gt images -------------------------------- #
123
+ # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
124
+ gt_path = self.paths[index]
125
+ # avoid errors caused by high latency in reading files
126
+ retry = 3
127
+ while retry > 0:
128
+ try:
129
+ img_bytes = self.file_client.get(gt_path, 'gt')
130
+ except (IOError, OSError) as e:
131
+ # logger = get_root_logger()
132
+ # logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}')
133
+ # change another file to read
134
+ index = random.randint(0, self.__len__()-1)
135
+ gt_path = self.paths[index]
136
+ time.sleep(1) # sleep 1s for occasional server congestion
137
+ else:
138
+ break
139
+ finally:
140
+ retry -= 1
141
+ img_gt = imfrombytes(img_bytes, float32=True)
142
+ # filter the dataset and remove images with too low quality
143
+ img_size = os.path.getsize(gt_path)
144
+ img_size = img_size/1024
145
+
146
+ while img_gt.shape[0] * img_gt.shape[1] < 384*384 or img_size<100:
147
+ index = random.randint(0, self.__len__()-1)
148
+ gt_path = self.paths[index]
149
+
150
+ time.sleep(0.1) # sleep 1s for occasional server congestion
151
+ img_bytes = self.file_client.get(gt_path, 'gt')
152
+ img_gt = imfrombytes(img_bytes, float32=True)
153
+ img_size = os.path.getsize(gt_path)
154
+ img_size = img_size/1024
155
+
156
+ # -------------------- Do augmentation for training: flip, rotation -------------------- #
157
+ img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])
158
+
159
+ # crop or pad to 400
160
+ # TODO: 400 is hard-coded. You may change it accordingly
161
+ h, w = img_gt.shape[0:2]
162
+ crop_pad_size = self.crop_size
163
+ # pad
164
+ if h < crop_pad_size or w < crop_pad_size:
165
+ pad_h = max(0, crop_pad_size - h)
166
+ pad_w = max(0, crop_pad_size - w)
167
+ img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
168
+ # crop
169
+ if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
170
+ h, w = img_gt.shape[0:2]
171
+ # randomly choose top and left coordinates
172
+ top = random.randint(0, h - crop_pad_size)
173
+ left = random.randint(0, w - crop_pad_size)
174
+ # top = (h - crop_pad_size) // 2 -1
175
+ # left = (w - crop_pad_size) // 2 -1
176
+ img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...]
177
+
178
+ # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
179
+ kernel_size = random.choice(self.kernel_range)
180
+ if np.random.uniform() < self.opt['sinc_prob']:
181
+ # this sinc filter setting is for kernels ranging from [7, 21]
182
+ if kernel_size < 13:
183
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
184
+ else:
185
+ omega_c = np.random.uniform(np.pi / 5, np.pi)
186
+ kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
187
+ else:
188
+ kernel = random_mixed_kernels(
189
+ self.kernel_list,
190
+ self.kernel_prob,
191
+ kernel_size,
192
+ self.blur_sigma,
193
+ self.blur_sigma, [-math.pi, math.pi],
194
+ self.betag_range,
195
+ self.betap_range,
196
+ noise_range=None)
197
+ # pad kernel
198
+ pad_size = (21 - kernel_size) // 2
199
+ kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
200
+
201
+ # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
202
+ kernel_size = random.choice(self.kernel_range)
203
+ if np.random.uniform() < self.opt['sinc_prob2']:
204
+ if kernel_size < 13:
205
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
206
+ else:
207
+ omega_c = np.random.uniform(np.pi / 5, np.pi)
208
+ kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
209
+ else:
210
+ kernel2 = random_mixed_kernels(
211
+ self.kernel_list2,
212
+ self.kernel_prob2,
213
+ kernel_size,
214
+ self.blur_sigma2,
215
+ self.blur_sigma2, [-math.pi, math.pi],
216
+ self.betag_range2,
217
+ self.betap_range2,
218
+ noise_range=None)
219
+
220
+ # pad kernel
221
+ pad_size = (21 - kernel_size) // 2
222
+ kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
223
+
224
+ # ------------------------------------- the final sinc kernel ------------------------------------- #
225
+ if np.random.uniform() < self.opt['final_sinc_prob']:
226
+ kernel_size = random.choice(self.kernel_range)
227
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
228
+ sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
229
+ sinc_kernel = torch.FloatTensor(sinc_kernel)
230
+ else:
231
+ sinc_kernel = self.pulse_tensor
232
+
233
+ # BGR to RGB, HWC to CHW, numpy to tensor
234
+ img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
235
+ kernel = torch.FloatTensor(kernel)
236
+ kernel2 = torch.FloatTensor(kernel2)
237
+
238
+ return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path}
239
+ return return_d
240
+
241
+ def __len__(self):
242
+ return len(self.paths)
StableSR/basicsr/data/realesrgan_paired_dataset.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from torch.utils import data as data
3
+ from torchvision.transforms.functional import normalize
4
+
5
+ from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb
6
+ from basicsr.data.transforms import augment, paired_random_crop
7
+ from basicsr.utils import FileClient, imfrombytes, img2tensor
8
+ from basicsr.utils.registry import DATASET_REGISTRY
9
+
10
+
11
+ @DATASET_REGISTRY.register(suffix='basicsr')
12
+ class RealESRGANPairedDataset(data.Dataset):
13
+ """Paired image dataset for image restoration.
14
+
15
+ Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and GT image pairs.
16
+
17
+ There are three modes:
18
+
19
+ 1. **lmdb**: Use lmdb files. If opt['io_backend'] == lmdb.
20
+ 2. **meta_info_file**: Use meta information file to generate paths. \
21
+ If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
22
+ 3. **folder**: Scan folders to generate paths. The rest.
23
+
24
+ Args:
25
+ opt (dict): Config for train datasets. It contains the following keys:
26
+ dataroot_gt (str): Data root path for gt.
27
+ dataroot_lq (str): Data root path for lq.
28
+ meta_info (str): Path for meta information file.
29
+ io_backend (dict): IO backend type and other kwarg.
30
+ filename_tmpl (str): Template for each filename. Note that the template excludes the file extension.
31
+ Default: '{}'.
32
+ gt_size (int): Cropped patched size for gt patches.
33
+ use_hflip (bool): Use horizontal flips.
34
+ use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
35
+ scale (bool): Scale, which will be added automatically.
36
+ phase (str): 'train' or 'val'.
37
+ """
38
+
39
+ def __init__(self, opt):
40
+ super(RealESRGANPairedDataset, self).__init__()
41
+ self.opt = opt
42
+ self.file_client = None
43
+ self.io_backend_opt = opt['io_backend']
44
+ # mean and std for normalizing the input images
45
+ self.mean = opt['mean'] if 'mean' in opt else None
46
+ self.std = opt['std'] if 'std' in opt else None
47
+
48
+ self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
49
+ self.filename_tmpl = opt['filename_tmpl'] if 'filename_tmpl' in opt else '{}'
50
+
51
+ # file client (lmdb io backend)
52
+ if self.io_backend_opt['type'] == 'lmdb':
53
+ self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
54
+ self.io_backend_opt['client_keys'] = ['lq', 'gt']
55
+ self.paths = paired_paths_from_lmdb([self.lq_folder, self.gt_folder], ['lq', 'gt'])
56
+ elif 'meta_info' in self.opt and self.opt['meta_info'] is not None:
57
+ # disk backend with meta_info
58
+ # Each line in the meta_info describes the relative path to an image
59
+ with open(self.opt['meta_info']) as fin:
60
+ paths = [line.strip() for line in fin]
61
+ self.paths = []
62
+ for path in paths:
63
+ gt_path, lq_path = path.split(', ')
64
+ gt_path = os.path.join(self.gt_folder, gt_path)
65
+ lq_path = os.path.join(self.lq_folder, lq_path)
66
+ self.paths.append(dict([('gt_path', gt_path), ('lq_path', lq_path)]))
67
+ else:
68
+ # disk backend
69
+ # it will scan the whole folder to get meta info
70
+ # it will be time-consuming for folders with too many files. It is recommended using an extra meta txt file
71
+ self.paths = paired_paths_from_folder([self.lq_folder, self.gt_folder], ['lq', 'gt'], self.filename_tmpl)
72
+
73
+ if 'num_pic' in self.opt:
74
+ self.paths = self.paths[:self.opt['num_pic']]
75
+ if 'phase' not in self.opt:
76
+ self.opt['phase'] = 'test'
77
+ if 'scale' not in self.opt:
78
+ self.opt['scale'] = 1
79
+
80
+
81
+ def __getitem__(self, index):
82
+ if self.file_client is None:
83
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
84
+
85
+ scale = self.opt['scale']
86
+
87
+ # Load gt and lq images. Dimension order: HWC; channel order: BGR;
88
+ # image range: [0, 1], float32.
89
+ gt_path = self.paths[index]['gt_path']
90
+ img_bytes = self.file_client.get(gt_path, 'gt')
91
+ img_gt = imfrombytes(img_bytes, float32=True)
92
+ lq_path = self.paths[index]['lq_path']
93
+ img_bytes = self.file_client.get(lq_path, 'lq')
94
+ img_lq = imfrombytes(img_bytes, float32=True)
95
+
96
+ # augmentation for training
97
+ if self.opt['phase'] == 'train':
98
+ gt_size = self.opt['gt_size']
99
+ # random crop
100
+ img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path)
101
+ # flip, rotation
102
+ img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_hflip'], self.opt['use_rot'])
103
+
104
+ # BGR to RGB, HWC to CHW, numpy to tensor
105
+ img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
106
+ # normalize
107
+ if self.mean is not None or self.std is not None:
108
+ normalize(img_lq, self.mean, self.std, inplace=True)
109
+ normalize(img_gt, self.mean, self.std, inplace=True)
110
+
111
+ return {'lq': img_lq, 'gt': img_gt, 'lq_path': lq_path, 'gt_path': gt_path}
112
+
113
+ def __len__(self):
114
+ return len(self.paths)
StableSR/basicsr/data/reds_dataset.py ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import torch
4
+ from pathlib import Path
5
+ from torch.utils import data as data
6
+
7
+ from basicsr.data.transforms import augment, paired_random_crop
8
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
9
+ from basicsr.utils.flow_util import dequantize_flow
10
+ from basicsr.utils.registry import DATASET_REGISTRY
11
+
12
+
13
+ @DATASET_REGISTRY.register()
14
+ class REDSDataset(data.Dataset):
15
+ """REDS dataset for training.
16
+
17
+ The keys are generated from a meta info txt file.
18
+ basicsr/data/meta_info/meta_info_REDS_GT.txt
19
+
20
+ Each line contains:
21
+ 1. subfolder (clip) name; 2. frame number; 3. image shape, separated by
22
+ a white space.
23
+ Examples:
24
+ 000 100 (720,1280,3)
25
+ 001 100 (720,1280,3)
26
+ ...
27
+
28
+ Key examples: "000/00000000"
29
+ GT (gt): Ground-Truth;
30
+ LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
31
+
32
+ Args:
33
+ opt (dict): Config for train dataset. It contains the following keys:
34
+ dataroot_gt (str): Data root path for gt.
35
+ dataroot_lq (str): Data root path for lq.
36
+ dataroot_flow (str, optional): Data root path for flow.
37
+ meta_info_file (str): Path for meta information file.
38
+ val_partition (str): Validation partition types. 'REDS4' or 'official'.
39
+ io_backend (dict): IO backend type and other kwarg.
40
+ num_frame (int): Window size for input frames.
41
+ gt_size (int): Cropped patched size for gt patches.
42
+ interval_list (list): Interval list for temporal augmentation.
43
+ random_reverse (bool): Random reverse input frames.
44
+ use_hflip (bool): Use horizontal flips.
45
+ use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
46
+ scale (bool): Scale, which will be added automatically.
47
+ """
48
+
49
+ def __init__(self, opt):
50
+ super(REDSDataset, self).__init__()
51
+ self.opt = opt
52
+ self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
53
+ self.flow_root = Path(opt['dataroot_flow']) if opt['dataroot_flow'] is not None else None
54
+ assert opt['num_frame'] % 2 == 1, (f'num_frame should be odd number, but got {opt["num_frame"]}')
55
+ self.num_frame = opt['num_frame']
56
+ self.num_half_frames = opt['num_frame'] // 2
57
+
58
+ self.keys = []
59
+ with open(opt['meta_info_file'], 'r') as fin:
60
+ for line in fin:
61
+ folder, frame_num, _ = line.split(' ')
62
+ self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))])
63
+
64
+ # remove the video clips used in validation
65
+ if opt['val_partition'] == 'REDS4':
66
+ val_partition = ['000', '011', '015', '020']
67
+ elif opt['val_partition'] == 'official':
68
+ val_partition = [f'{v:03d}' for v in range(240, 270)]
69
+ else:
70
+ raise ValueError(f'Wrong validation partition {opt["val_partition"]}.'
71
+ f"Supported ones are ['official', 'REDS4'].")
72
+ self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition]
73
+
74
+ # file client (io backend)
75
+ self.file_client = None
76
+ self.io_backend_opt = opt['io_backend']
77
+ self.is_lmdb = False
78
+ if self.io_backend_opt['type'] == 'lmdb':
79
+ self.is_lmdb = True
80
+ if self.flow_root is not None:
81
+ self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root]
82
+ self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow']
83
+ else:
84
+ self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
85
+ self.io_backend_opt['client_keys'] = ['lq', 'gt']
86
+
87
+ # temporal augmentation configs
88
+ self.interval_list = opt['interval_list']
89
+ self.random_reverse = opt['random_reverse']
90
+ interval_str = ','.join(str(x) for x in opt['interval_list'])
91
+ logger = get_root_logger()
92
+ logger.info(f'Temporal augmentation interval list: [{interval_str}]; '
93
+ f'random reverse is {self.random_reverse}.')
94
+
95
+ def __getitem__(self, index):
96
+ if self.file_client is None:
97
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
98
+
99
+ scale = self.opt['scale']
100
+ gt_size = self.opt['gt_size']
101
+ key = self.keys[index]
102
+ clip_name, frame_name = key.split('/') # key example: 000/00000000
103
+ center_frame_idx = int(frame_name)
104
+
105
+ # determine the neighboring frames
106
+ interval = random.choice(self.interval_list)
107
+
108
+ # ensure not exceeding the borders
109
+ start_frame_idx = center_frame_idx - self.num_half_frames * interval
110
+ end_frame_idx = center_frame_idx + self.num_half_frames * interval
111
+ # each clip has 100 frames starting from 0 to 99
112
+ while (start_frame_idx < 0) or (end_frame_idx > 99):
113
+ center_frame_idx = random.randint(0, 99)
114
+ start_frame_idx = (center_frame_idx - self.num_half_frames * interval)
115
+ end_frame_idx = center_frame_idx + self.num_half_frames * interval
116
+ frame_name = f'{center_frame_idx:08d}'
117
+ neighbor_list = list(range(start_frame_idx, end_frame_idx + 1, interval))
118
+ # random reverse
119
+ if self.random_reverse and random.random() < 0.5:
120
+ neighbor_list.reverse()
121
+
122
+ assert len(neighbor_list) == self.num_frame, (f'Wrong length of neighbor list: {len(neighbor_list)}')
123
+
124
+ # get the GT frame (as the center frame)
125
+ if self.is_lmdb:
126
+ img_gt_path = f'{clip_name}/{frame_name}'
127
+ else:
128
+ img_gt_path = self.gt_root / clip_name / f'{frame_name}.png'
129
+ img_bytes = self.file_client.get(img_gt_path, 'gt')
130
+ img_gt = imfrombytes(img_bytes, float32=True)
131
+
132
+ # get the neighboring LQ frames
133
+ img_lqs = []
134
+ for neighbor in neighbor_list:
135
+ if self.is_lmdb:
136
+ img_lq_path = f'{clip_name}/{neighbor:08d}'
137
+ else:
138
+ img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png'
139
+ img_bytes = self.file_client.get(img_lq_path, 'lq')
140
+ img_lq = imfrombytes(img_bytes, float32=True)
141
+ img_lqs.append(img_lq)
142
+
143
+ # get flows
144
+ if self.flow_root is not None:
145
+ img_flows = []
146
+ # read previous flows
147
+ for i in range(self.num_half_frames, 0, -1):
148
+ if self.is_lmdb:
149
+ flow_path = f'{clip_name}/{frame_name}_p{i}'
150
+ else:
151
+ flow_path = (self.flow_root / clip_name / f'{frame_name}_p{i}.png')
152
+ img_bytes = self.file_client.get(flow_path, 'flow')
153
+ cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) # uint8, [0, 255]
154
+ dx, dy = np.split(cat_flow, 2, axis=0)
155
+ flow = dequantize_flow(dx, dy, max_val=20, denorm=False) # we use max_val 20 here.
156
+ img_flows.append(flow)
157
+ # read next flows
158
+ for i in range(1, self.num_half_frames + 1):
159
+ if self.is_lmdb:
160
+ flow_path = f'{clip_name}/{frame_name}_n{i}'
161
+ else:
162
+ flow_path = (self.flow_root / clip_name / f'{frame_name}_n{i}.png')
163
+ img_bytes = self.file_client.get(flow_path, 'flow')
164
+ cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) # uint8, [0, 255]
165
+ dx, dy = np.split(cat_flow, 2, axis=0)
166
+ flow = dequantize_flow(dx, dy, max_val=20, denorm=False) # we use max_val 20 here.
167
+ img_flows.append(flow)
168
+
169
+ # for random crop, here, img_flows and img_lqs have the same
170
+ # spatial size
171
+ img_lqs.extend(img_flows)
172
+
173
+ # randomly crop
174
+ img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path)
175
+ if self.flow_root is not None:
176
+ img_lqs, img_flows = img_lqs[:self.num_frame], img_lqs[self.num_frame:]
177
+
178
+ # augmentation - flip, rotate
179
+ img_lqs.append(img_gt)
180
+ if self.flow_root is not None:
181
+ img_results, img_flows = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'], img_flows)
182
+ else:
183
+ img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
184
+
185
+ img_results = img2tensor(img_results)
186
+ img_lqs = torch.stack(img_results[0:-1], dim=0)
187
+ img_gt = img_results[-1]
188
+
189
+ if self.flow_root is not None:
190
+ img_flows = img2tensor(img_flows)
191
+ # add the zero center flow
192
+ img_flows.insert(self.num_half_frames, torch.zeros_like(img_flows[0]))
193
+ img_flows = torch.stack(img_flows, dim=0)
194
+
195
+ # img_lqs: (t, c, h, w)
196
+ # img_flows: (t, 2, h, w)
197
+ # img_gt: (c, h, w)
198
+ # key: str
199
+ if self.flow_root is not None:
200
+ return {'lq': img_lqs, 'flow': img_flows, 'gt': img_gt, 'key': key}
201
+ else:
202
+ return {'lq': img_lqs, 'gt': img_gt, 'key': key}
203
+
204
+ def __len__(self):
205
+ return len(self.keys)
206
+
207
+
208
+ @DATASET_REGISTRY.register()
209
+ class REDSRecurrentDataset(data.Dataset):
210
+ """REDS dataset for training recurrent networks.
211
+
212
+ The keys are generated from a meta info txt file.
213
+ basicsr/data/meta_info/meta_info_REDS_GT.txt
214
+
215
+ Each line contains:
216
+ 1. subfolder (clip) name; 2. frame number; 3. image shape, separated by
217
+ a white space.
218
+ Examples:
219
+ 000 100 (720,1280,3)
220
+ 001 100 (720,1280,3)
221
+ ...
222
+
223
+ Key examples: "000/00000000"
224
+ GT (gt): Ground-Truth;
225
+ LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
226
+
227
+ Args:
228
+ opt (dict): Config for train dataset. It contains the following keys:
229
+ dataroot_gt (str): Data root path for gt.
230
+ dataroot_lq (str): Data root path for lq.
231
+ dataroot_flow (str, optional): Data root path for flow.
232
+ meta_info_file (str): Path for meta information file.
233
+ val_partition (str): Validation partition types. 'REDS4' or 'official'.
234
+ io_backend (dict): IO backend type and other kwarg.
235
+ num_frame (int): Window size for input frames.
236
+ gt_size (int): Cropped patched size for gt patches.
237
+ interval_list (list): Interval list for temporal augmentation.
238
+ random_reverse (bool): Random reverse input frames.
239
+ use_hflip (bool): Use horizontal flips.
240
+ use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
241
+ scale (bool): Scale, which will be added automatically.
242
+ """
243
+
244
+ def __init__(self, opt):
245
+ super(REDSRecurrentDataset, self).__init__()
246
+ self.opt = opt
247
+ self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
248
+ self.num_frame = opt['num_frame']
249
+
250
+ self.keys = []
251
+ with open(opt['meta_info_file'], 'r') as fin:
252
+ for line in fin:
253
+ folder, frame_num, _ = line.split(' ')
254
+ self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))])
255
+
256
+ # remove the video clips used in validation
257
+ if opt['val_partition'] == 'REDS4':
258
+ val_partition = ['000', '011', '015', '020']
259
+ elif opt['val_partition'] == 'official':
260
+ val_partition = [f'{v:03d}' for v in range(240, 270)]
261
+ else:
262
+ raise ValueError(f'Wrong validation partition {opt["val_partition"]}.'
263
+ f"Supported ones are ['official', 'REDS4'].")
264
+ if opt['test_mode']:
265
+ self.keys = [v for v in self.keys if v.split('/')[0] in val_partition]
266
+ else:
267
+ self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition]
268
+
269
+ # file client (io backend)
270
+ self.file_client = None
271
+ self.io_backend_opt = opt['io_backend']
272
+ self.is_lmdb = False
273
+ if self.io_backend_opt['type'] == 'lmdb':
274
+ self.is_lmdb = True
275
+ if hasattr(self, 'flow_root') and self.flow_root is not None:
276
+ self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root]
277
+ self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow']
278
+ else:
279
+ self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
280
+ self.io_backend_opt['client_keys'] = ['lq', 'gt']
281
+
282
+ # temporal augmentation configs
283
+ self.interval_list = opt.get('interval_list', [1])
284
+ self.random_reverse = opt.get('random_reverse', False)
285
+ interval_str = ','.join(str(x) for x in self.interval_list)
286
+ logger = get_root_logger()
287
+ logger.info(f'Temporal augmentation interval list: [{interval_str}]; '
288
+ f'random reverse is {self.random_reverse}.')
289
+
290
+ def __getitem__(self, index):
291
+ if self.file_client is None:
292
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
293
+
294
+ scale = self.opt['scale']
295
+ gt_size = self.opt['gt_size']
296
+ key = self.keys[index]
297
+ clip_name, frame_name = key.split('/') # key example: 000/00000000
298
+
299
+ # determine the neighboring frames
300
+ interval = random.choice(self.interval_list)
301
+
302
+ # ensure not exceeding the borders
303
+ start_frame_idx = int(frame_name)
304
+ if start_frame_idx > 100 - self.num_frame * interval:
305
+ start_frame_idx = random.randint(0, 100 - self.num_frame * interval)
306
+ end_frame_idx = start_frame_idx + self.num_frame * interval
307
+
308
+ neighbor_list = list(range(start_frame_idx, end_frame_idx, interval))
309
+
310
+ # random reverse
311
+ if self.random_reverse and random.random() < 0.5:
312
+ neighbor_list.reverse()
313
+
314
+ # get the neighboring LQ and GT frames
315
+ img_lqs = []
316
+ img_gts = []
317
+ for neighbor in neighbor_list:
318
+ if self.is_lmdb:
319
+ img_lq_path = f'{clip_name}/{neighbor:08d}'
320
+ img_gt_path = f'{clip_name}/{neighbor:08d}'
321
+ else:
322
+ img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png'
323
+ img_gt_path = self.gt_root / clip_name / f'{neighbor:08d}.png'
324
+
325
+ # get LQ
326
+ img_bytes = self.file_client.get(img_lq_path, 'lq')
327
+ img_lq = imfrombytes(img_bytes, float32=True)
328
+ img_lqs.append(img_lq)
329
+
330
+ # get GT
331
+ img_bytes = self.file_client.get(img_gt_path, 'gt')
332
+ img_gt = imfrombytes(img_bytes, float32=True)
333
+ img_gts.append(img_gt)
334
+
335
+ # randomly crop
336
+ img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path)
337
+
338
+ # augmentation - flip, rotate
339
+ img_lqs.extend(img_gts)
340
+ img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
341
+
342
+ img_results = img2tensor(img_results)
343
+ img_gts = torch.stack(img_results[len(img_lqs) // 2:], dim=0)
344
+ img_lqs = torch.stack(img_results[:len(img_lqs) // 2], dim=0)
345
+
346
+ # img_lqs: (t, c, h, w)
347
+ # img_gts: (t, c, h, w)
348
+ # key: str
349
+ return {'lq': img_lqs, 'gt': img_gts, 'key': key}
350
+
351
+ def __len__(self):
352
+ return len(self.keys)
StableSR/basicsr/data/single_image_dataset.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from os import path as osp
2
+ from torch.utils import data as data
3
+ from torchvision.transforms.functional import normalize
4
+
5
+ from basicsr.data.data_util import paths_from_lmdb
6
+ from basicsr.utils import FileClient, imfrombytes, img2tensor, rgb2ycbcr, scandir
7
+ from basicsr.utils.registry import DATASET_REGISTRY
8
+
9
+ from pathlib import Path
10
+ import random
11
+ import cv2
12
+ import numpy as np
13
+ import torch
14
+
15
+ @DATASET_REGISTRY.register()
16
+ class SingleImageDataset(data.Dataset):
17
+ """Read only lq images in the test phase.
18
+
19
+ Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc).
20
+
21
+ There are two modes:
22
+ 1. 'meta_info_file': Use meta information file to generate paths.
23
+ 2. 'folder': Scan folders to generate paths.
24
+
25
+ Args:
26
+ opt (dict): Config for train datasets. It contains the following keys:
27
+ dataroot_lq (str): Data root path for lq.
28
+ meta_info_file (str): Path for meta information file.
29
+ io_backend (dict): IO backend type and other kwarg.
30
+ """
31
+
32
+ def __init__(self, opt):
33
+ super(SingleImageDataset, self).__init__()
34
+ self.opt = opt
35
+ # file client (io backend)
36
+ self.file_client = None
37
+ self.io_backend_opt = opt['io_backend']
38
+ self.mean = opt['mean'] if 'mean' in opt else None
39
+ self.std = opt['std'] if 'std' in opt else None
40
+ self.lq_folder = opt['dataroot_lq']
41
+
42
+ if self.io_backend_opt['type'] == 'lmdb':
43
+ self.io_backend_opt['db_paths'] = [self.lq_folder]
44
+ self.io_backend_opt['client_keys'] = ['lq']
45
+ self.paths = paths_from_lmdb(self.lq_folder)
46
+ elif 'meta_info_file' in self.opt:
47
+ with open(self.opt['meta_info_file'], 'r') as fin:
48
+ self.paths = [osp.join(self.lq_folder, line.rstrip().split(' ')[0]) for line in fin]
49
+ else:
50
+ self.paths = sorted(list(scandir(self.lq_folder, full_path=True)))
51
+
52
+ def __getitem__(self, index):
53
+ if self.file_client is None:
54
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
55
+
56
+ # load lq image
57
+ lq_path = self.paths[index]
58
+ img_bytes = self.file_client.get(lq_path, 'lq')
59
+ img_lq = imfrombytes(img_bytes, float32=True)
60
+
61
+ # color space transform
62
+ if 'color' in self.opt and self.opt['color'] == 'y':
63
+ img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None]
64
+
65
+ # BGR to RGB, HWC to CHW, numpy to tensor
66
+ img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
67
+ # normalize
68
+ if self.mean is not None or self.std is not None:
69
+ normalize(img_lq, self.mean, self.std, inplace=True)
70
+ return {'lq': img_lq, 'lq_path': lq_path}
71
+
72
+ def __len__(self):
73
+ return len(self.paths)
74
+
75
+ @DATASET_REGISTRY.register()
76
+ class SingleImageNPDataset(data.Dataset):
77
+ """Read only lq images in the test phase.
78
+
79
+ Read diffusion generated data for training CFW.
80
+
81
+ Args:
82
+ opt (dict): Config for train datasets. It contains the following keys:
83
+ gt_path: Data root path for training data. The path needs to contain the following folders:
84
+ gts: Ground-truth images.
85
+ inputs: Input LQ images.
86
+ latents: The corresponding HQ latent code generated by diffusion model given the input LQ image.
87
+ samples: The corresponding HQ image given the HQ latent code, just for verification.
88
+ io_backend (dict): IO backend type and other kwarg.
89
+ """
90
+
91
+ def __init__(self, opt):
92
+ super(SingleImageNPDataset, self).__init__()
93
+ self.opt = opt
94
+ # file client (io backend)
95
+ self.file_client = None
96
+ self.io_backend_opt = opt['io_backend']
97
+ self.mean = opt['mean'] if 'mean' in opt else None
98
+ self.std = opt['std'] if 'std' in opt else None
99
+ if 'image_type' not in opt:
100
+ opt['image_type'] = 'png'
101
+
102
+ if isinstance(opt['gt_path'], str):
103
+ self.gt_paths = sorted([str(x) for x in Path(opt['gt_path']+'/gts').glob('*.'+opt['image_type'])])
104
+ self.lq_paths = sorted([str(x) for x in Path(opt['gt_path']+'/inputs').glob('*.'+opt['image_type'])])
105
+ self.np_paths = sorted([str(x) for x in Path(opt['gt_path']+'/latents').glob('*.npy')])
106
+ self.sample_paths = sorted([str(x) for x in Path(opt['gt_path']+'/samples').glob('*.'+opt['image_type'])])
107
+ else:
108
+ self.gt_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/gts').glob('*.'+opt['image_type'])])
109
+ self.lq_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/inputs').glob('*.'+opt['image_type'])])
110
+ self.np_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/latents').glob('*.npy')])
111
+ self.sample_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/samples').glob('*.'+opt['image_type'])])
112
+ if len(opt['gt_path']) > 1:
113
+ for i in range(len(opt['gt_path'])-1):
114
+ self.gt_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/gts').glob('*.'+opt['image_type'])]))
115
+ self.lq_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/inputs').glob('*.'+opt['image_type'])]))
116
+ self.np_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/latents').glob('*.npy')]))
117
+ self.sample_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/samples').glob('*.'+opt['image_type'])]))
118
+
119
+ assert len(self.gt_paths) == len(self.lq_paths)
120
+ assert len(self.gt_paths) == len(self.np_paths)
121
+ assert len(self.gt_paths) == len(self.sample_paths)
122
+
123
+ def __getitem__(self, index):
124
+ if self.file_client is None:
125
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
126
+
127
+ # load lq image
128
+ lq_path = self.lq_paths[index]
129
+ gt_path = self.gt_paths[index]
130
+ sample_path = self.sample_paths[index]
131
+ np_path = self.np_paths[index]
132
+
133
+ img_bytes = self.file_client.get(lq_path, 'lq')
134
+ img_lq = imfrombytes(img_bytes, float32=True)
135
+
136
+ img_bytes_gt = self.file_client.get(gt_path, 'gt')
137
+ img_gt = imfrombytes(img_bytes_gt, float32=True)
138
+
139
+ img_bytes_sample = self.file_client.get(sample_path, 'sample')
140
+ img_sample = imfrombytes(img_bytes_sample, float32=True)
141
+
142
+ latent_np = np.load(np_path)
143
+
144
+ # color space transform
145
+ if 'color' in self.opt and self.opt['color'] == 'y':
146
+ img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None]
147
+ img_gt = rgb2ycbcr(img_gt, y_only=True)[..., None]
148
+ img_sample = rgb2ycbcr(img_sample, y_only=True)[..., None]
149
+
150
+ # BGR to RGB, HWC to CHW, numpy to tensor
151
+ img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
152
+ img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True)
153
+ img_sample = img2tensor(img_sample, bgr2rgb=True, float32=True)
154
+ latent_np = torch.from_numpy(latent_np).float()
155
+ latent_np = latent_np.to(img_gt.device)
156
+ # normalize
157
+ if self.mean is not None or self.std is not None:
158
+ normalize(img_lq, self.mean, self.std, inplace=True)
159
+ normalize(img_gt, self.mean, self.std, inplace=True)
160
+ normalize(img_sample, self.mean, self.std, inplace=True)
161
+ return {'lq': img_lq, 'lq_path': lq_path, 'gt': img_gt, 'gt_path': gt_path, 'latent': latent_np[0], 'latent_path': np_path, 'sample': img_sample, 'sample_path': sample_path}
162
+
163
+ def __len__(self):
164
+ return len(self.gt_paths)
StableSR/basicsr/data/transforms.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import random
3
+ import torch
4
+
5
+
6
+ def mod_crop(img, scale):
7
+ """Mod crop images, used during testing.
8
+
9
+ Args:
10
+ img (ndarray): Input image.
11
+ scale (int): Scale factor.
12
+
13
+ Returns:
14
+ ndarray: Result image.
15
+ """
16
+ img = img.copy()
17
+ if img.ndim in (2, 3):
18
+ h, w = img.shape[0], img.shape[1]
19
+ h_remainder, w_remainder = h % scale, w % scale
20
+ img = img[:h - h_remainder, :w - w_remainder, ...]
21
+ else:
22
+ raise ValueError(f'Wrong img ndim: {img.ndim}.')
23
+ return img
24
+
25
+
26
+ def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path=None):
27
+ """Paired random crop. Support Numpy array and Tensor inputs.
28
+
29
+ It crops lists of lq and gt images with corresponding locations.
30
+
31
+ Args:
32
+ img_gts (list[ndarray] | ndarray | list[Tensor] | Tensor): GT images. Note that all images
33
+ should have the same shape. If the input is an ndarray, it will
34
+ be transformed to a list containing itself.
35
+ img_lqs (list[ndarray] | ndarray): LQ images. Note that all images
36
+ should have the same shape. If the input is an ndarray, it will
37
+ be transformed to a list containing itself.
38
+ gt_patch_size (int): GT patch size.
39
+ scale (int): Scale factor.
40
+ gt_path (str): Path to ground-truth. Default: None.
41
+
42
+ Returns:
43
+ list[ndarray] | ndarray: GT images and LQ images. If returned results
44
+ only have one element, just return ndarray.
45
+ """
46
+
47
+ if not isinstance(img_gts, list):
48
+ img_gts = [img_gts]
49
+ if not isinstance(img_lqs, list):
50
+ img_lqs = [img_lqs]
51
+
52
+ # determine input type: Numpy array or Tensor
53
+ input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy'
54
+
55
+ if input_type == 'Tensor':
56
+ h_lq, w_lq = img_lqs[0].size()[-2:]
57
+ h_gt, w_gt = img_gts[0].size()[-2:]
58
+ else:
59
+ h_lq, w_lq = img_lqs[0].shape[0:2]
60
+ h_gt, w_gt = img_gts[0].shape[0:2]
61
+ lq_patch_size = gt_patch_size // scale
62
+
63
+ if h_gt != h_lq * scale or w_gt != w_lq * scale:
64
+ raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
65
+ f'multiplication of LQ ({h_lq}, {w_lq}).')
66
+ if h_lq < lq_patch_size or w_lq < lq_patch_size:
67
+ raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
68
+ f'({lq_patch_size}, {lq_patch_size}). '
69
+ f'Please remove {gt_path}.')
70
+
71
+ # randomly choose top and left coordinates for lq patch
72
+ top = random.randint(0, h_lq - lq_patch_size)
73
+ left = random.randint(0, w_lq - lq_patch_size)
74
+
75
+ # crop lq patch
76
+ if input_type == 'Tensor':
77
+ img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs]
78
+ else:
79
+ img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs]
80
+
81
+ # crop corresponding gt patch
82
+ top_gt, left_gt = int(top * scale), int(left * scale)
83
+ if input_type == 'Tensor':
84
+ img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts]
85
+ else:
86
+ img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts]
87
+ if len(img_gts) == 1:
88
+ img_gts = img_gts[0]
89
+ if len(img_lqs) == 1:
90
+ img_lqs = img_lqs[0]
91
+ return img_gts, img_lqs
92
+
93
+ def triplet_random_crop(img_gts, img_lqs, img_segs, gt_patch_size, scale, gt_path=None):
94
+
95
+ if not isinstance(img_gts, list):
96
+ img_gts = [img_gts]
97
+ if not isinstance(img_lqs, list):
98
+ img_lqs = [img_lqs]
99
+ if not isinstance(img_segs, list):
100
+ img_segs = [img_segs]
101
+
102
+ # determine input type: Numpy array or Tensor
103
+ input_type = 'Tensor' if torch.is_tensor(img_gts[0]) else 'Numpy'
104
+
105
+ if input_type == 'Tensor':
106
+ h_lq, w_lq = img_lqs[0].size()[-2:]
107
+ h_gt, w_gt = img_gts[0].size()[-2:]
108
+ h_seg, w_seg = img_segs[0].size()[-2:]
109
+ else:
110
+ h_lq, w_lq = img_lqs[0].shape[0:2]
111
+ h_gt, w_gt = img_gts[0].shape[0:2]
112
+ h_seg, w_seg = img_segs[0].shape[0:2]
113
+ lq_patch_size = gt_patch_size // scale
114
+
115
+ if h_gt != h_lq * scale or w_gt != w_lq * scale:
116
+ raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ',
117
+ f'multiplication of LQ ({h_lq}, {w_lq}).')
118
+ if h_lq < lq_patch_size or w_lq < lq_patch_size:
119
+ raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size '
120
+ f'({lq_patch_size}, {lq_patch_size}). '
121
+ f'Please remove {gt_path}.')
122
+
123
+ # randomly choose top and left coordinates for lq patch
124
+ top = random.randint(0, h_lq - lq_patch_size)
125
+ left = random.randint(0, w_lq - lq_patch_size)
126
+
127
+ # crop lq patch
128
+ if input_type == 'Tensor':
129
+ img_lqs = [v[:, :, top:top + lq_patch_size, left:left + lq_patch_size] for v in img_lqs]
130
+ else:
131
+ img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs]
132
+
133
+ # crop corresponding gt patch
134
+ top_gt, left_gt = int(top * scale), int(left * scale)
135
+ if input_type == 'Tensor':
136
+ img_gts = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_gts]
137
+ else:
138
+ img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts]
139
+
140
+ if input_type == 'Tensor':
141
+ img_segs = [v[:, :, top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size] for v in img_segs]
142
+ else:
143
+ img_segs = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_segs]
144
+
145
+ if len(img_gts) == 1:
146
+ img_gts = img_gts[0]
147
+ if len(img_lqs) == 1:
148
+ img_lqs = img_lqs[0]
149
+ if len(img_segs) == 1:
150
+ img_segs = img_segs[0]
151
+
152
+ return img_gts, img_lqs, img_segs
153
+
154
+
155
+ def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False):
156
+ """Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).
157
+
158
+ We use vertical flip and transpose for rotation implementation.
159
+ All the images in the list use the same augmentation.
160
+
161
+ Args:
162
+ imgs (list[ndarray] | ndarray): Images to be augmented. If the input
163
+ is an ndarray, it will be transformed to a list.
164
+ hflip (bool): Horizontal flip. Default: True.
165
+ rotation (bool): Ratotation. Default: True.
166
+ flows (list[ndarray]: Flows to be augmented. If the input is an
167
+ ndarray, it will be transformed to a list.
168
+ Dimension is (h, w, 2). Default: None.
169
+ return_status (bool): Return the status of flip and rotation.
170
+ Default: False.
171
+
172
+ Returns:
173
+ list[ndarray] | ndarray: Augmented images and flows. If returned
174
+ results only have one element, just return ndarray.
175
+
176
+ """
177
+ hflip = hflip and random.random() < 0.5
178
+ vflip = rotation and random.random() < 0.5
179
+ rot90 = rotation and random.random() < 0.5
180
+
181
+ def _augment(img):
182
+ if hflip: # horizontal
183
+ cv2.flip(img, 1, img)
184
+ if vflip: # vertical
185
+ cv2.flip(img, 0, img)
186
+ if rot90:
187
+ img = img.transpose(1, 0, 2)
188
+ return img
189
+
190
+ def _augment_flow(flow):
191
+ if hflip: # horizontal
192
+ cv2.flip(flow, 1, flow)
193
+ flow[:, :, 0] *= -1
194
+ if vflip: # vertical
195
+ cv2.flip(flow, 0, flow)
196
+ flow[:, :, 1] *= -1
197
+ if rot90:
198
+ flow = flow.transpose(1, 0, 2)
199
+ flow = flow[:, :, [1, 0]]
200
+ return flow
201
+
202
+ if not isinstance(imgs, list):
203
+ imgs = [imgs]
204
+ imgs = [_augment(img) for img in imgs]
205
+ if len(imgs) == 1:
206
+ imgs = imgs[0]
207
+
208
+ if flows is not None:
209
+ if not isinstance(flows, list):
210
+ flows = [flows]
211
+ flows = [_augment_flow(flow) for flow in flows]
212
+ if len(flows) == 1:
213
+ flows = flows[0]
214
+ return imgs, flows
215
+ else:
216
+ if return_status:
217
+ return imgs, (hflip, vflip, rot90)
218
+ else:
219
+ return imgs
220
+
221
+
222
+ def img_rotate(img, angle, center=None, scale=1.0):
223
+ """Rotate image.
224
+
225
+ Args:
226
+ img (ndarray): Image to be rotated.
227
+ angle (float): Rotation angle in degrees. Positive values mean
228
+ counter-clockwise rotation.
229
+ center (tuple[int]): Rotation center. If the center is None,
230
+ initialize it as the center of the image. Default: None.
231
+ scale (float): Isotropic scale factor. Default: 1.0.
232
+ """
233
+ (h, w) = img.shape[:2]
234
+
235
+ if center is None:
236
+ center = (w // 2, h // 2)
237
+
238
+ matrix = cv2.getRotationMatrix2D(center, angle, scale)
239
+ rotated_img = cv2.warpAffine(img, matrix, (w, h))
240
+ return rotated_img
StableSR/basicsr/data/video_test_dataset.py ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import torch
3
+ from os import path as osp
4
+ from torch.utils import data as data
5
+
6
+ from basicsr.data.data_util import duf_downsample, generate_frame_indices, read_img_seq
7
+ from basicsr.utils import get_root_logger, scandir
8
+ from basicsr.utils.registry import DATASET_REGISTRY
9
+
10
+
11
+ @DATASET_REGISTRY.register()
12
+ class VideoTestDataset(data.Dataset):
13
+ """Video test dataset.
14
+
15
+ Supported datasets: Vid4, REDS4, REDSofficial.
16
+ More generally, it supports testing dataset with following structures:
17
+
18
+ ::
19
+
20
+ dataroot
21
+ ├── subfolder1
22
+ ├── frame000
23
+ ├── frame001
24
+ ├── ...
25
+ ├── subfolder2
26
+ ├── frame000
27
+ ├── frame001
28
+ ├── ...
29
+ ├── ...
30
+
31
+ For testing datasets, there is no need to prepare LMDB files.
32
+
33
+ Args:
34
+ opt (dict): Config for train dataset. It contains the following keys:
35
+ dataroot_gt (str): Data root path for gt.
36
+ dataroot_lq (str): Data root path for lq.
37
+ io_backend (dict): IO backend type and other kwarg.
38
+ cache_data (bool): Whether to cache testing datasets.
39
+ name (str): Dataset name.
40
+ meta_info_file (str): The path to the file storing the list of test folders. If not provided, all the folders
41
+ in the dataroot will be used.
42
+ num_frame (int): Window size for input frames.
43
+ padding (str): Padding mode.
44
+ """
45
+
46
+ def __init__(self, opt):
47
+ super(VideoTestDataset, self).__init__()
48
+ self.opt = opt
49
+ self.cache_data = opt['cache_data']
50
+ self.gt_root, self.lq_root = opt['dataroot_gt'], opt['dataroot_lq']
51
+ self.data_info = {'lq_path': [], 'gt_path': [], 'folder': [], 'idx': [], 'border': []}
52
+ # file client (io backend)
53
+ self.file_client = None
54
+ self.io_backend_opt = opt['io_backend']
55
+ assert self.io_backend_opt['type'] != 'lmdb', 'No need to use lmdb during validation/test.'
56
+
57
+ logger = get_root_logger()
58
+ logger.info(f'Generate data info for VideoTestDataset - {opt["name"]}')
59
+ self.imgs_lq, self.imgs_gt = {}, {}
60
+ if 'meta_info_file' in opt:
61
+ with open(opt['meta_info_file'], 'r') as fin:
62
+ subfolders = [line.split(' ')[0] for line in fin]
63
+ subfolders_lq = [osp.join(self.lq_root, key) for key in subfolders]
64
+ subfolders_gt = [osp.join(self.gt_root, key) for key in subfolders]
65
+ else:
66
+ subfolders_lq = sorted(glob.glob(osp.join(self.lq_root, '*')))
67
+ subfolders_gt = sorted(glob.glob(osp.join(self.gt_root, '*')))
68
+
69
+ if opt['name'].lower() in ['vid4', 'reds4', 'redsofficial']:
70
+ for subfolder_lq, subfolder_gt in zip(subfolders_lq, subfolders_gt):
71
+ # get frame list for lq and gt
72
+ subfolder_name = osp.basename(subfolder_lq)
73
+ img_paths_lq = sorted(list(scandir(subfolder_lq, full_path=True)))
74
+ img_paths_gt = sorted(list(scandir(subfolder_gt, full_path=True)))
75
+
76
+ max_idx = len(img_paths_lq)
77
+ assert max_idx == len(img_paths_gt), (f'Different number of images in lq ({max_idx})'
78
+ f' and gt folders ({len(img_paths_gt)})')
79
+
80
+ self.data_info['lq_path'].extend(img_paths_lq)
81
+ self.data_info['gt_path'].extend(img_paths_gt)
82
+ self.data_info['folder'].extend([subfolder_name] * max_idx)
83
+ for i in range(max_idx):
84
+ self.data_info['idx'].append(f'{i}/{max_idx}')
85
+ border_l = [0] * max_idx
86
+ for i in range(self.opt['num_frame'] // 2):
87
+ border_l[i] = 1
88
+ border_l[max_idx - i - 1] = 1
89
+ self.data_info['border'].extend(border_l)
90
+
91
+ # cache data or save the frame list
92
+ if self.cache_data:
93
+ logger.info(f'Cache {subfolder_name} for VideoTestDataset...')
94
+ self.imgs_lq[subfolder_name] = read_img_seq(img_paths_lq)
95
+ self.imgs_gt[subfolder_name] = read_img_seq(img_paths_gt)
96
+ else:
97
+ self.imgs_lq[subfolder_name] = img_paths_lq
98
+ self.imgs_gt[subfolder_name] = img_paths_gt
99
+ else:
100
+ raise ValueError(f'Non-supported video test dataset: {type(opt["name"])}')
101
+
102
+ def __getitem__(self, index):
103
+ folder = self.data_info['folder'][index]
104
+ idx, max_idx = self.data_info['idx'][index].split('/')
105
+ idx, max_idx = int(idx), int(max_idx)
106
+ border = self.data_info['border'][index]
107
+ lq_path = self.data_info['lq_path'][index]
108
+
109
+ select_idx = generate_frame_indices(idx, max_idx, self.opt['num_frame'], padding=self.opt['padding'])
110
+
111
+ if self.cache_data:
112
+ imgs_lq = self.imgs_lq[folder].index_select(0, torch.LongTensor(select_idx))
113
+ img_gt = self.imgs_gt[folder][idx]
114
+ else:
115
+ img_paths_lq = [self.imgs_lq[folder][i] for i in select_idx]
116
+ imgs_lq = read_img_seq(img_paths_lq)
117
+ img_gt = read_img_seq([self.imgs_gt[folder][idx]])
118
+ img_gt.squeeze_(0)
119
+
120
+ return {
121
+ 'lq': imgs_lq, # (t, c, h, w)
122
+ 'gt': img_gt, # (c, h, w)
123
+ 'folder': folder, # folder name
124
+ 'idx': self.data_info['idx'][index], # e.g., 0/99
125
+ 'border': border, # 1 for border, 0 for non-border
126
+ 'lq_path': lq_path # center frame
127
+ }
128
+
129
+ def __len__(self):
130
+ return len(self.data_info['gt_path'])
131
+
132
+
133
+ @DATASET_REGISTRY.register()
134
+ class VideoTestVimeo90KDataset(data.Dataset):
135
+ """Video test dataset for Vimeo90k-Test dataset.
136
+
137
+ It only keeps the center frame for testing.
138
+ For testing datasets, there is no need to prepare LMDB files.
139
+
140
+ Args:
141
+ opt (dict): Config for train dataset. It contains the following keys:
142
+ dataroot_gt (str): Data root path for gt.
143
+ dataroot_lq (str): Data root path for lq.
144
+ io_backend (dict): IO backend type and other kwarg.
145
+ cache_data (bool): Whether to cache testing datasets.
146
+ name (str): Dataset name.
147
+ meta_info_file (str): The path to the file storing the list of test folders. If not provided, all the folders
148
+ in the dataroot will be used.
149
+ num_frame (int): Window size for input frames.
150
+ padding (str): Padding mode.
151
+ """
152
+
153
+ def __init__(self, opt):
154
+ super(VideoTestVimeo90KDataset, self).__init__()
155
+ self.opt = opt
156
+ self.cache_data = opt['cache_data']
157
+ if self.cache_data:
158
+ raise NotImplementedError('cache_data in Vimeo90K-Test dataset is not implemented.')
159
+ self.gt_root, self.lq_root = opt['dataroot_gt'], opt['dataroot_lq']
160
+ self.data_info = {'lq_path': [], 'gt_path': [], 'folder': [], 'idx': [], 'border': []}
161
+ neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])]
162
+
163
+ # file client (io backend)
164
+ self.file_client = None
165
+ self.io_backend_opt = opt['io_backend']
166
+ assert self.io_backend_opt['type'] != 'lmdb', 'No need to use lmdb during validation/test.'
167
+
168
+ logger = get_root_logger()
169
+ logger.info(f'Generate data info for VideoTestDataset - {opt["name"]}')
170
+ with open(opt['meta_info_file'], 'r') as fin:
171
+ subfolders = [line.split(' ')[0] for line in fin]
172
+ for idx, subfolder in enumerate(subfolders):
173
+ gt_path = osp.join(self.gt_root, subfolder, 'im4.png')
174
+ self.data_info['gt_path'].append(gt_path)
175
+ lq_paths = [osp.join(self.lq_root, subfolder, f'im{i}.png') for i in neighbor_list]
176
+ self.data_info['lq_path'].append(lq_paths)
177
+ self.data_info['folder'].append('vimeo90k')
178
+ self.data_info['idx'].append(f'{idx}/{len(subfolders)}')
179
+ self.data_info['border'].append(0)
180
+
181
+ def __getitem__(self, index):
182
+ lq_path = self.data_info['lq_path'][index]
183
+ gt_path = self.data_info['gt_path'][index]
184
+ imgs_lq = read_img_seq(lq_path)
185
+ img_gt = read_img_seq([gt_path])
186
+ img_gt.squeeze_(0)
187
+
188
+ return {
189
+ 'lq': imgs_lq, # (t, c, h, w)
190
+ 'gt': img_gt, # (c, h, w)
191
+ 'folder': self.data_info['folder'][index], # folder name
192
+ 'idx': self.data_info['idx'][index], # e.g., 0/843
193
+ 'border': self.data_info['border'][index], # 0 for non-border
194
+ 'lq_path': lq_path[self.opt['num_frame'] // 2] # center frame
195
+ }
196
+
197
+ def __len__(self):
198
+ return len(self.data_info['gt_path'])
199
+
200
+
201
+ @DATASET_REGISTRY.register()
202
+ class VideoTestDUFDataset(VideoTestDataset):
203
+ """ Video test dataset for DUF dataset.
204
+
205
+ Args:
206
+ opt (dict): Config for train dataset. Most of keys are the same as VideoTestDataset.
207
+ It has the following extra keys:
208
+ use_duf_downsampling (bool): Whether to use duf downsampling to generate low-resolution frames.
209
+ scale (bool): Scale, which will be added automatically.
210
+ """
211
+
212
+ def __getitem__(self, index):
213
+ folder = self.data_info['folder'][index]
214
+ idx, max_idx = self.data_info['idx'][index].split('/')
215
+ idx, max_idx = int(idx), int(max_idx)
216
+ border = self.data_info['border'][index]
217
+ lq_path = self.data_info['lq_path'][index]
218
+
219
+ select_idx = generate_frame_indices(idx, max_idx, self.opt['num_frame'], padding=self.opt['padding'])
220
+
221
+ if self.cache_data:
222
+ if self.opt['use_duf_downsampling']:
223
+ # read imgs_gt to generate low-resolution frames
224
+ imgs_lq = self.imgs_gt[folder].index_select(0, torch.LongTensor(select_idx))
225
+ imgs_lq = duf_downsample(imgs_lq, kernel_size=13, scale=self.opt['scale'])
226
+ else:
227
+ imgs_lq = self.imgs_lq[folder].index_select(0, torch.LongTensor(select_idx))
228
+ img_gt = self.imgs_gt[folder][idx]
229
+ else:
230
+ if self.opt['use_duf_downsampling']:
231
+ img_paths_lq = [self.imgs_gt[folder][i] for i in select_idx]
232
+ # read imgs_gt to generate low-resolution frames
233
+ imgs_lq = read_img_seq(img_paths_lq, require_mod_crop=True, scale=self.opt['scale'])
234
+ imgs_lq = duf_downsample(imgs_lq, kernel_size=13, scale=self.opt['scale'])
235
+ else:
236
+ img_paths_lq = [self.imgs_lq[folder][i] for i in select_idx]
237
+ imgs_lq = read_img_seq(img_paths_lq)
238
+ img_gt = read_img_seq([self.imgs_gt[folder][idx]], require_mod_crop=True, scale=self.opt['scale'])
239
+ img_gt.squeeze_(0)
240
+
241
+ return {
242
+ 'lq': imgs_lq, # (t, c, h, w)
243
+ 'gt': img_gt, # (c, h, w)
244
+ 'folder': folder, # folder name
245
+ 'idx': self.data_info['idx'][index], # e.g., 0/99
246
+ 'border': border, # 1 for border, 0 for non-border
247
+ 'lq_path': lq_path # center frame
248
+ }
249
+
250
+
251
+ @DATASET_REGISTRY.register()
252
+ class VideoRecurrentTestDataset(VideoTestDataset):
253
+ """Video test dataset for recurrent architectures, which takes LR video
254
+ frames as input and output corresponding HR video frames.
255
+
256
+ Args:
257
+ opt (dict): Same as VideoTestDataset. Unused opt:
258
+ padding (str): Padding mode.
259
+
260
+ """
261
+
262
+ def __init__(self, opt):
263
+ super(VideoRecurrentTestDataset, self).__init__(opt)
264
+ # Find unique folder strings
265
+ self.folders = sorted(list(set(self.data_info['folder'])))
266
+
267
+ def __getitem__(self, index):
268
+ folder = self.folders[index]
269
+
270
+ if self.cache_data:
271
+ imgs_lq = self.imgs_lq[folder]
272
+ imgs_gt = self.imgs_gt[folder]
273
+ else:
274
+ raise NotImplementedError('Without cache_data is not implemented.')
275
+
276
+ return {
277
+ 'lq': imgs_lq,
278
+ 'gt': imgs_gt,
279
+ 'folder': folder,
280
+ }
281
+
282
+ def __len__(self):
283
+ return len(self.folders)
StableSR/basicsr/data/vimeo90k_dataset.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import torch
3
+ from pathlib import Path
4
+ from torch.utils import data as data
5
+
6
+ from basicsr.data.transforms import augment, paired_random_crop
7
+ from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
8
+ from basicsr.utils.registry import DATASET_REGISTRY
9
+
10
+
11
+ @DATASET_REGISTRY.register()
12
+ class Vimeo90KDataset(data.Dataset):
13
+ """Vimeo90K dataset for training.
14
+
15
+ The keys are generated from a meta info txt file.
16
+ basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt
17
+
18
+ Each line contains the following items, separated by a white space.
19
+
20
+ 1. clip name;
21
+ 2. frame number;
22
+ 3. image shape
23
+
24
+ Examples:
25
+
26
+ ::
27
+
28
+ 00001/0001 7 (256,448,3)
29
+ 00001/0002 7 (256,448,3)
30
+
31
+ - Key examples: "00001/0001"
32
+ - GT (gt): Ground-Truth;
33
+ - LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
34
+
35
+ The neighboring frame list for different num_frame:
36
+
37
+ ::
38
+
39
+ num_frame | frame list
40
+ 1 | 4
41
+ 3 | 3,4,5
42
+ 5 | 2,3,4,5,6
43
+ 7 | 1,2,3,4,5,6,7
44
+
45
+ Args:
46
+ opt (dict): Config for train dataset. It contains the following keys:
47
+ dataroot_gt (str): Data root path for gt.
48
+ dataroot_lq (str): Data root path for lq.
49
+ meta_info_file (str): Path for meta information file.
50
+ io_backend (dict): IO backend type and other kwarg.
51
+ num_frame (int): Window size for input frames.
52
+ gt_size (int): Cropped patched size for gt patches.
53
+ random_reverse (bool): Random reverse input frames.
54
+ use_hflip (bool): Use horizontal flips.
55
+ use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
56
+ scale (bool): Scale, which will be added automatically.
57
+ """
58
+
59
+ def __init__(self, opt):
60
+ super(Vimeo90KDataset, self).__init__()
61
+ self.opt = opt
62
+ self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
63
+
64
+ with open(opt['meta_info_file'], 'r') as fin:
65
+ self.keys = [line.split(' ')[0] for line in fin]
66
+
67
+ # file client (io backend)
68
+ self.file_client = None
69
+ self.io_backend_opt = opt['io_backend']
70
+ self.is_lmdb = False
71
+ if self.io_backend_opt['type'] == 'lmdb':
72
+ self.is_lmdb = True
73
+ self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
74
+ self.io_backend_opt['client_keys'] = ['lq', 'gt']
75
+
76
+ # indices of input images
77
+ self.neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])]
78
+
79
+ # temporal augmentation configs
80
+ self.random_reverse = opt['random_reverse']
81
+ logger = get_root_logger()
82
+ logger.info(f'Random reverse is {self.random_reverse}.')
83
+
84
+ def __getitem__(self, index):
85
+ if self.file_client is None:
86
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
87
+
88
+ # random reverse
89
+ if self.random_reverse and random.random() < 0.5:
90
+ self.neighbor_list.reverse()
91
+
92
+ scale = self.opt['scale']
93
+ gt_size = self.opt['gt_size']
94
+ key = self.keys[index]
95
+ clip, seq = key.split('/') # key example: 00001/0001
96
+
97
+ # get the GT frame (im4.png)
98
+ if self.is_lmdb:
99
+ img_gt_path = f'{key}/im4'
100
+ else:
101
+ img_gt_path = self.gt_root / clip / seq / 'im4.png'
102
+ img_bytes = self.file_client.get(img_gt_path, 'gt')
103
+ img_gt = imfrombytes(img_bytes, float32=True)
104
+
105
+ # get the neighboring LQ frames
106
+ img_lqs = []
107
+ for neighbor in self.neighbor_list:
108
+ if self.is_lmdb:
109
+ img_lq_path = f'{clip}/{seq}/im{neighbor}'
110
+ else:
111
+ img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
112
+ img_bytes = self.file_client.get(img_lq_path, 'lq')
113
+ img_lq = imfrombytes(img_bytes, float32=True)
114
+ img_lqs.append(img_lq)
115
+
116
+ # randomly crop
117
+ img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path)
118
+
119
+ # augmentation - flip, rotate
120
+ img_lqs.append(img_gt)
121
+ img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
122
+
123
+ img_results = img2tensor(img_results)
124
+ img_lqs = torch.stack(img_results[0:-1], dim=0)
125
+ img_gt = img_results[-1]
126
+
127
+ # img_lqs: (t, c, h, w)
128
+ # img_gt: (c, h, w)
129
+ # key: str
130
+ return {'lq': img_lqs, 'gt': img_gt, 'key': key}
131
+
132
+ def __len__(self):
133
+ return len(self.keys)
134
+
135
+
136
+ @DATASET_REGISTRY.register()
137
+ class Vimeo90KRecurrentDataset(Vimeo90KDataset):
138
+
139
+ def __init__(self, opt):
140
+ super(Vimeo90KRecurrentDataset, self).__init__(opt)
141
+
142
+ self.flip_sequence = opt['flip_sequence']
143
+ self.neighbor_list = [1, 2, 3, 4, 5, 6, 7]
144
+
145
+ def __getitem__(self, index):
146
+ if self.file_client is None:
147
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
148
+
149
+ # random reverse
150
+ if self.random_reverse and random.random() < 0.5:
151
+ self.neighbor_list.reverse()
152
+
153
+ scale = self.opt['scale']
154
+ gt_size = self.opt['gt_size']
155
+ key = self.keys[index]
156
+ clip, seq = key.split('/') # key example: 00001/0001
157
+
158
+ # get the neighboring LQ and GT frames
159
+ img_lqs = []
160
+ img_gts = []
161
+ for neighbor in self.neighbor_list:
162
+ if self.is_lmdb:
163
+ img_lq_path = f'{clip}/{seq}/im{neighbor}'
164
+ img_gt_path = f'{clip}/{seq}/im{neighbor}'
165
+ else:
166
+ img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
167
+ img_gt_path = self.gt_root / clip / seq / f'im{neighbor}.png'
168
+ # LQ
169
+ img_bytes = self.file_client.get(img_lq_path, 'lq')
170
+ img_lq = imfrombytes(img_bytes, float32=True)
171
+ # GT
172
+ img_bytes = self.file_client.get(img_gt_path, 'gt')
173
+ img_gt = imfrombytes(img_bytes, float32=True)
174
+
175
+ img_lqs.append(img_lq)
176
+ img_gts.append(img_gt)
177
+
178
+ # randomly crop
179
+ img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path)
180
+
181
+ # augmentation - flip, rotate
182
+ img_lqs.extend(img_gts)
183
+ img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
184
+
185
+ img_results = img2tensor(img_results)
186
+ img_lqs = torch.stack(img_results[:7], dim=0)
187
+ img_gts = torch.stack(img_results[7:], dim=0)
188
+
189
+ if self.flip_sequence: # flip the sequence: 7 frames to 14 frames
190
+ img_lqs = torch.cat([img_lqs, img_lqs.flip(0)], dim=0)
191
+ img_gts = torch.cat([img_gts, img_gts.flip(0)], dim=0)
192
+
193
+ # img_lqs: (t, c, h, w)
194
+ # img_gt: (c, h, w)
195
+ # key: str
196
+ return {'lq': img_lqs, 'gt': img_gts, 'key': key}
197
+
198
+ def __len__(self):
199
+ return len(self.keys)
StableSR/basicsr/losses/__init__.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ from copy import deepcopy
3
+ from os import path as osp
4
+
5
+ from basicsr.utils import get_root_logger, scandir
6
+ from basicsr.utils.registry import LOSS_REGISTRY
7
+ from .gan_loss import g_path_regularize, gradient_penalty_loss, r1_penalty
8
+
9
+ __all__ = ['build_loss', 'gradient_penalty_loss', 'r1_penalty', 'g_path_regularize']
10
+
11
+ # automatically scan and import loss modules for registry
12
+ # scan all the files under the 'losses' folder and collect files ending with '_loss.py'
13
+ loss_folder = osp.dirname(osp.abspath(__file__))
14
+ loss_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(loss_folder) if v.endswith('_loss.py')]
15
+ # import all the loss modules
16
+ _model_modules = [importlib.import_module(f'basicsr.losses.{file_name}') for file_name in loss_filenames]
17
+
18
+
19
+ def build_loss(opt):
20
+ """Build loss from options.
21
+
22
+ Args:
23
+ opt (dict): Configuration. It must contain:
24
+ type (str): Model type.
25
+ """
26
+ opt = deepcopy(opt)
27
+ loss_type = opt.pop('type')
28
+ loss = LOSS_REGISTRY.get(loss_type)(**opt)
29
+ logger = get_root_logger()
30
+ logger.info(f'Loss [{loss.__class__.__name__}] is created.')
31
+ return loss
StableSR/basicsr/losses/basic_loss.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn as nn
3
+ from torch.nn import functional as F
4
+
5
+ from basicsr.archs.vgg_arch import VGGFeatureExtractor
6
+ from basicsr.utils.registry import LOSS_REGISTRY
7
+ from .loss_util import weighted_loss
8
+
9
+ _reduction_modes = ['none', 'mean', 'sum']
10
+
11
+
12
+ @weighted_loss
13
+ def l1_loss(pred, target):
14
+ return F.l1_loss(pred, target, reduction='none')
15
+
16
+
17
+ @weighted_loss
18
+ def mse_loss(pred, target):
19
+ return F.mse_loss(pred, target, reduction='none')
20
+
21
+
22
+ @weighted_loss
23
+ def charbonnier_loss(pred, target, eps=1e-12):
24
+ return torch.sqrt((pred - target)**2 + eps)
25
+
26
+
27
+ @LOSS_REGISTRY.register()
28
+ class L1Loss(nn.Module):
29
+ """L1 (mean absolute error, MAE) loss.
30
+
31
+ Args:
32
+ loss_weight (float): Loss weight for L1 loss. Default: 1.0.
33
+ reduction (str): Specifies the reduction to apply to the output.
34
+ Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
35
+ """
36
+
37
+ def __init__(self, loss_weight=1.0, reduction='mean'):
38
+ super(L1Loss, self).__init__()
39
+ if reduction not in ['none', 'mean', 'sum']:
40
+ raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}')
41
+
42
+ self.loss_weight = loss_weight
43
+ self.reduction = reduction
44
+
45
+ def forward(self, pred, target, weight=None, **kwargs):
46
+ """
47
+ Args:
48
+ pred (Tensor): of shape (N, C, H, W). Predicted tensor.
49
+ target (Tensor): of shape (N, C, H, W). Ground truth tensor.
50
+ weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None.
51
+ """
52
+ return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction)
53
+
54
+
55
+ @LOSS_REGISTRY.register()
56
+ class MSELoss(nn.Module):
57
+ """MSE (L2) loss.
58
+
59
+ Args:
60
+ loss_weight (float): Loss weight for MSE loss. Default: 1.0.
61
+ reduction (str): Specifies the reduction to apply to the output.
62
+ Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
63
+ """
64
+
65
+ def __init__(self, loss_weight=1.0, reduction='mean'):
66
+ super(MSELoss, self).__init__()
67
+ if reduction not in ['none', 'mean', 'sum']:
68
+ raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}')
69
+
70
+ self.loss_weight = loss_weight
71
+ self.reduction = reduction
72
+
73
+ def forward(self, pred, target, weight=None, **kwargs):
74
+ """
75
+ Args:
76
+ pred (Tensor): of shape (N, C, H, W). Predicted tensor.
77
+ target (Tensor): of shape (N, C, H, W). Ground truth tensor.
78
+ weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None.
79
+ """
80
+ return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction)
81
+
82
+
83
+ @LOSS_REGISTRY.register()
84
+ class CharbonnierLoss(nn.Module):
85
+ """Charbonnier loss (one variant of Robust L1Loss, a differentiable
86
+ variant of L1Loss).
87
+
88
+ Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
89
+ Super-Resolution".
90
+
91
+ Args:
92
+ loss_weight (float): Loss weight for L1 loss. Default: 1.0.
93
+ reduction (str): Specifies the reduction to apply to the output.
94
+ Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
95
+ eps (float): A value used to control the curvature near zero. Default: 1e-12.
96
+ """
97
+
98
+ def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12):
99
+ super(CharbonnierLoss, self).__init__()
100
+ if reduction not in ['none', 'mean', 'sum']:
101
+ raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}')
102
+
103
+ self.loss_weight = loss_weight
104
+ self.reduction = reduction
105
+ self.eps = eps
106
+
107
+ def forward(self, pred, target, weight=None, **kwargs):
108
+ """
109
+ Args:
110
+ pred (Tensor): of shape (N, C, H, W). Predicted tensor.
111
+ target (Tensor): of shape (N, C, H, W). Ground truth tensor.
112
+ weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None.
113
+ """
114
+ return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction)
115
+
116
+
117
+ @LOSS_REGISTRY.register()
118
+ class WeightedTVLoss(L1Loss):
119
+ """Weighted TV loss.
120
+
121
+ Args:
122
+ loss_weight (float): Loss weight. Default: 1.0.
123
+ """
124
+
125
+ def __init__(self, loss_weight=1.0, reduction='mean'):
126
+ if reduction not in ['mean', 'sum']:
127
+ raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: mean | sum')
128
+ super(WeightedTVLoss, self).__init__(loss_weight=loss_weight, reduction=reduction)
129
+
130
+ def forward(self, pred, weight=None):
131
+ if weight is None:
132
+ y_weight = None
133
+ x_weight = None
134
+ else:
135
+ y_weight = weight[:, :, :-1, :]
136
+ x_weight = weight[:, :, :, :-1]
137
+
138
+ y_diff = super().forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=y_weight)
139
+ x_diff = super().forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=x_weight)
140
+
141
+ loss = x_diff + y_diff
142
+
143
+ return loss
144
+
145
+
146
+ @LOSS_REGISTRY.register()
147
+ class PerceptualLoss(nn.Module):
148
+ """Perceptual loss with commonly used style loss.
149
+
150
+ Args:
151
+ layer_weights (dict): The weight for each layer of vgg feature.
152
+ Here is an example: {'conv5_4': 1.}, which means the conv5_4
153
+ feature layer (before relu5_4) will be extracted with weight
154
+ 1.0 in calculating losses.
155
+ vgg_type (str): The type of vgg network used as feature extractor.
156
+ Default: 'vgg19'.
157
+ use_input_norm (bool): If True, normalize the input image in vgg.
158
+ Default: True.
159
+ range_norm (bool): If True, norm images with range [-1, 1] to [0, 1].
160
+ Default: False.
161
+ perceptual_weight (float): If `perceptual_weight > 0`, the perceptual
162
+ loss will be calculated and the loss will multiplied by the
163
+ weight. Default: 1.0.
164
+ style_weight (float): If `style_weight > 0`, the style loss will be
165
+ calculated and the loss will multiplied by the weight.
166
+ Default: 0.
167
+ criterion (str): Criterion used for perceptual loss. Default: 'l1'.
168
+ """
169
+
170
+ def __init__(self,
171
+ layer_weights,
172
+ vgg_type='vgg19',
173
+ use_input_norm=True,
174
+ range_norm=False,
175
+ perceptual_weight=1.0,
176
+ style_weight=0.,
177
+ criterion='l1'):
178
+ super(PerceptualLoss, self).__init__()
179
+ self.perceptual_weight = perceptual_weight
180
+ self.style_weight = style_weight
181
+ self.layer_weights = layer_weights
182
+ self.vgg = VGGFeatureExtractor(
183
+ layer_name_list=list(layer_weights.keys()),
184
+ vgg_type=vgg_type,
185
+ use_input_norm=use_input_norm,
186
+ range_norm=range_norm)
187
+
188
+ self.criterion_type = criterion
189
+ if self.criterion_type == 'l1':
190
+ self.criterion = torch.nn.L1Loss()
191
+ elif self.criterion_type == 'l2':
192
+ self.criterion = torch.nn.L2loss()
193
+ elif self.criterion_type == 'fro':
194
+ self.criterion = None
195
+ else:
196
+ raise NotImplementedError(f'{criterion} criterion has not been supported.')
197
+
198
+ def forward(self, x, gt):
199
+ """Forward function.
200
+
201
+ Args:
202
+ x (Tensor): Input tensor with shape (n, c, h, w).
203
+ gt (Tensor): Ground-truth tensor with shape (n, c, h, w).
204
+
205
+ Returns:
206
+ Tensor: Forward results.
207
+ """
208
+ # extract vgg features
209
+ x_features = self.vgg(x)
210
+ gt_features = self.vgg(gt.detach())
211
+
212
+ # calculate perceptual loss
213
+ if self.perceptual_weight > 0:
214
+ percep_loss = 0
215
+ for k in x_features.keys():
216
+ if self.criterion_type == 'fro':
217
+ percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k]
218
+ else:
219
+ percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k]
220
+ percep_loss *= self.perceptual_weight
221
+ else:
222
+ percep_loss = None
223
+
224
+ # calculate style loss
225
+ if self.style_weight > 0:
226
+ style_loss = 0
227
+ for k in x_features.keys():
228
+ if self.criterion_type == 'fro':
229
+ style_loss += torch.norm(
230
+ self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k]
231
+ else:
232
+ style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat(
233
+ gt_features[k])) * self.layer_weights[k]
234
+ style_loss *= self.style_weight
235
+ else:
236
+ style_loss = None
237
+
238
+ return percep_loss, style_loss
239
+
240
+ def _gram_mat(self, x):
241
+ """Calculate Gram matrix.
242
+
243
+ Args:
244
+ x (torch.Tensor): Tensor with shape of (n, c, h, w).
245
+
246
+ Returns:
247
+ torch.Tensor: Gram matrix.
248
+ """
249
+ n, c, h, w = x.size()
250
+ features = x.view(n, c, w * h)
251
+ features_t = features.transpose(1, 2)
252
+ gram = features.bmm(features_t) / (c * h * w)
253
+ return gram
StableSR/basicsr/losses/gan_loss.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ from torch import autograd as autograd
4
+ from torch import nn as nn
5
+ from torch.nn import functional as F
6
+
7
+ from basicsr.utils.registry import LOSS_REGISTRY
8
+
9
+
10
+ @LOSS_REGISTRY.register()
11
+ class GANLoss(nn.Module):
12
+ """Define GAN loss.
13
+
14
+ Args:
15
+ gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'.
16
+ real_label_val (float): The value for real label. Default: 1.0.
17
+ fake_label_val (float): The value for fake label. Default: 0.0.
18
+ loss_weight (float): Loss weight. Default: 1.0.
19
+ Note that loss_weight is only for generators; and it is always 1.0
20
+ for discriminators.
21
+ """
22
+
23
+ def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0):
24
+ super(GANLoss, self).__init__()
25
+ self.gan_type = gan_type
26
+ self.loss_weight = loss_weight
27
+ self.real_label_val = real_label_val
28
+ self.fake_label_val = fake_label_val
29
+
30
+ if self.gan_type == 'vanilla':
31
+ self.loss = nn.BCEWithLogitsLoss()
32
+ elif self.gan_type == 'lsgan':
33
+ self.loss = nn.MSELoss()
34
+ elif self.gan_type == 'wgan':
35
+ self.loss = self._wgan_loss
36
+ elif self.gan_type == 'wgan_softplus':
37
+ self.loss = self._wgan_softplus_loss
38
+ elif self.gan_type == 'hinge':
39
+ self.loss = nn.ReLU()
40
+ else:
41
+ raise NotImplementedError(f'GAN type {self.gan_type} is not implemented.')
42
+
43
+ def _wgan_loss(self, input, target):
44
+ """wgan loss.
45
+
46
+ Args:
47
+ input (Tensor): Input tensor.
48
+ target (bool): Target label.
49
+
50
+ Returns:
51
+ Tensor: wgan loss.
52
+ """
53
+ return -input.mean() if target else input.mean()
54
+
55
+ def _wgan_softplus_loss(self, input, target):
56
+ """wgan loss with soft plus. softplus is a smooth approximation to the
57
+ ReLU function.
58
+
59
+ In StyleGAN2, it is called:
60
+ Logistic loss for discriminator;
61
+ Non-saturating loss for generator.
62
+
63
+ Args:
64
+ input (Tensor): Input tensor.
65
+ target (bool): Target label.
66
+
67
+ Returns:
68
+ Tensor: wgan loss.
69
+ """
70
+ return F.softplus(-input).mean() if target else F.softplus(input).mean()
71
+
72
+ def get_target_label(self, input, target_is_real):
73
+ """Get target label.
74
+
75
+ Args:
76
+ input (Tensor): Input tensor.
77
+ target_is_real (bool): Whether the target is real or fake.
78
+
79
+ Returns:
80
+ (bool | Tensor): Target tensor. Return bool for wgan, otherwise,
81
+ return Tensor.
82
+ """
83
+
84
+ if self.gan_type in ['wgan', 'wgan_softplus']:
85
+ return target_is_real
86
+ target_val = (self.real_label_val if target_is_real else self.fake_label_val)
87
+ return input.new_ones(input.size()) * target_val
88
+
89
+ def forward(self, input, target_is_real, is_disc=False):
90
+ """
91
+ Args:
92
+ input (Tensor): The input for the loss module, i.e., the network
93
+ prediction.
94
+ target_is_real (bool): Whether the targe is real or fake.
95
+ is_disc (bool): Whether the loss for discriminators or not.
96
+ Default: False.
97
+
98
+ Returns:
99
+ Tensor: GAN loss value.
100
+ """
101
+ target_label = self.get_target_label(input, target_is_real)
102
+ if self.gan_type == 'hinge':
103
+ if is_disc: # for discriminators in hinge-gan
104
+ input = -input if target_is_real else input
105
+ loss = self.loss(1 + input).mean()
106
+ else: # for generators in hinge-gan
107
+ loss = -input.mean()
108
+ else: # other gan types
109
+ loss = self.loss(input, target_label)
110
+
111
+ # loss_weight is always 1.0 for discriminators
112
+ return loss if is_disc else loss * self.loss_weight
113
+
114
+
115
+ @LOSS_REGISTRY.register()
116
+ class MultiScaleGANLoss(GANLoss):
117
+ """
118
+ MultiScaleGANLoss accepts a list of predictions
119
+ """
120
+
121
+ def __init__(self, gan_type, real_label_val=1.0, fake_label_val=0.0, loss_weight=1.0):
122
+ super(MultiScaleGANLoss, self).__init__(gan_type, real_label_val, fake_label_val, loss_weight)
123
+
124
+ def forward(self, input, target_is_real, is_disc=False):
125
+ """
126
+ The input is a list of tensors, or a list of (a list of tensors)
127
+ """
128
+ if isinstance(input, list):
129
+ loss = 0
130
+ for pred_i in input:
131
+ if isinstance(pred_i, list):
132
+ # Only compute GAN loss for the last layer
133
+ # in case of multiscale feature matching
134
+ pred_i = pred_i[-1]
135
+ # Safe operation: 0-dim tensor calling self.mean() does nothing
136
+ loss_tensor = super().forward(pred_i, target_is_real, is_disc).mean()
137
+ loss += loss_tensor
138
+ return loss / len(input)
139
+ else:
140
+ return super().forward(input, target_is_real, is_disc)
141
+
142
+
143
+ def r1_penalty(real_pred, real_img):
144
+ """R1 regularization for discriminator. The core idea is to
145
+ penalize the gradient on real data alone: when the
146
+ generator distribution produces the true data distribution
147
+ and the discriminator is equal to 0 on the data manifold, the
148
+ gradient penalty ensures that the discriminator cannot create
149
+ a non-zero gradient orthogonal to the data manifold without
150
+ suffering a loss in the GAN game.
151
+
152
+ Reference: Eq. 9 in Which training methods for GANs do actually converge.
153
+ """
154
+ grad_real = autograd.grad(outputs=real_pred.sum(), inputs=real_img, create_graph=True)[0]
155
+ grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
156
+ return grad_penalty
157
+
158
+
159
+ def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
160
+ noise = torch.randn_like(fake_img) / math.sqrt(fake_img.shape[2] * fake_img.shape[3])
161
+ grad = autograd.grad(outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True)[0]
162
+ path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
163
+
164
+ path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
165
+
166
+ path_penalty = (path_lengths - path_mean).pow(2).mean()
167
+
168
+ return path_penalty, path_lengths.detach().mean(), path_mean.detach()
169
+
170
+
171
+ def gradient_penalty_loss(discriminator, real_data, fake_data, weight=None):
172
+ """Calculate gradient penalty for wgan-gp.
173
+
174
+ Args:
175
+ discriminator (nn.Module): Network for the discriminator.
176
+ real_data (Tensor): Real input data.
177
+ fake_data (Tensor): Fake input data.
178
+ weight (Tensor): Weight tensor. Default: None.
179
+
180
+ Returns:
181
+ Tensor: A tensor for gradient penalty.
182
+ """
183
+
184
+ batch_size = real_data.size(0)
185
+ alpha = real_data.new_tensor(torch.rand(batch_size, 1, 1, 1))
186
+
187
+ # interpolate between real_data and fake_data
188
+ interpolates = alpha * real_data + (1. - alpha) * fake_data
189
+ interpolates = autograd.Variable(interpolates, requires_grad=True)
190
+
191
+ disc_interpolates = discriminator(interpolates)
192
+ gradients = autograd.grad(
193
+ outputs=disc_interpolates,
194
+ inputs=interpolates,
195
+ grad_outputs=torch.ones_like(disc_interpolates),
196
+ create_graph=True,
197
+ retain_graph=True,
198
+ only_inputs=True)[0]
199
+
200
+ if weight is not None:
201
+ gradients = gradients * weight
202
+
203
+ gradients_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean()
204
+ if weight is not None:
205
+ gradients_penalty /= torch.mean(weight)
206
+
207
+ return gradients_penalty
StableSR/basicsr/losses/loss_util.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import torch
3
+ from torch.nn import functional as F
4
+
5
+
6
+ def reduce_loss(loss, reduction):
7
+ """Reduce loss as specified.
8
+
9
+ Args:
10
+ loss (Tensor): Elementwise loss tensor.
11
+ reduction (str): Options are 'none', 'mean' and 'sum'.
12
+
13
+ Returns:
14
+ Tensor: Reduced loss tensor.
15
+ """
16
+ reduction_enum = F._Reduction.get_enum(reduction)
17
+ # none: 0, elementwise_mean:1, sum: 2
18
+ if reduction_enum == 0:
19
+ return loss
20
+ elif reduction_enum == 1:
21
+ return loss.mean()
22
+ else:
23
+ return loss.sum()
24
+
25
+
26
+ def weight_reduce_loss(loss, weight=None, reduction='mean'):
27
+ """Apply element-wise weight and reduce loss.
28
+
29
+ Args:
30
+ loss (Tensor): Element-wise loss.
31
+ weight (Tensor): Element-wise weights. Default: None.
32
+ reduction (str): Same as built-in losses of PyTorch. Options are
33
+ 'none', 'mean' and 'sum'. Default: 'mean'.
34
+
35
+ Returns:
36
+ Tensor: Loss values.
37
+ """
38
+ # if weight is specified, apply element-wise weight
39
+ if weight is not None:
40
+ assert weight.dim() == loss.dim()
41
+ assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
42
+ loss = loss * weight
43
+
44
+ # if weight is not specified or reduction is sum, just reduce the loss
45
+ if weight is None or reduction == 'sum':
46
+ loss = reduce_loss(loss, reduction)
47
+ # if reduction is mean, then compute mean over weight region
48
+ elif reduction == 'mean':
49
+ if weight.size(1) > 1:
50
+ weight = weight.sum()
51
+ else:
52
+ weight = weight.sum() * loss.size(1)
53
+ loss = loss.sum() / weight
54
+
55
+ return loss
56
+
57
+
58
+ def weighted_loss(loss_func):
59
+ """Create a weighted version of a given loss function.
60
+
61
+ To use this decorator, the loss function must have the signature like
62
+ `loss_func(pred, target, **kwargs)`. The function only needs to compute
63
+ element-wise loss without any reduction. This decorator will add weight
64
+ and reduction arguments to the function. The decorated function will have
65
+ the signature like `loss_func(pred, target, weight=None, reduction='mean',
66
+ **kwargs)`.
67
+
68
+ :Example:
69
+
70
+ >>> import torch
71
+ >>> @weighted_loss
72
+ >>> def l1_loss(pred, target):
73
+ >>> return (pred - target).abs()
74
+
75
+ >>> pred = torch.Tensor([0, 2, 3])
76
+ >>> target = torch.Tensor([1, 1, 1])
77
+ >>> weight = torch.Tensor([1, 0, 1])
78
+
79
+ >>> l1_loss(pred, target)
80
+ tensor(1.3333)
81
+ >>> l1_loss(pred, target, weight)
82
+ tensor(1.5000)
83
+ >>> l1_loss(pred, target, reduction='none')
84
+ tensor([1., 1., 2.])
85
+ >>> l1_loss(pred, target, weight, reduction='sum')
86
+ tensor(3.)
87
+ """
88
+
89
+ @functools.wraps(loss_func)
90
+ def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
91
+ # get element-wise loss
92
+ loss = loss_func(pred, target, **kwargs)
93
+ loss = weight_reduce_loss(loss, weight, reduction)
94
+ return loss
95
+
96
+ return wrapper
97
+
98
+
99
+ def get_local_weights(residual, ksize):
100
+ """Get local weights for generating the artifact map of LDL.
101
+
102
+ It is only called by the `get_refined_artifact_map` function.
103
+
104
+ Args:
105
+ residual (Tensor): Residual between predicted and ground truth images.
106
+ ksize (Int): size of the local window.
107
+
108
+ Returns:
109
+ Tensor: weight for each pixel to be discriminated as an artifact pixel
110
+ """
111
+
112
+ pad = (ksize - 1) // 2
113
+ residual_pad = F.pad(residual, pad=[pad, pad, pad, pad], mode='reflect')
114
+
115
+ unfolded_residual = residual_pad.unfold(2, ksize, 1).unfold(3, ksize, 1)
116
+ pixel_level_weight = torch.var(unfolded_residual, dim=(-1, -2), unbiased=True, keepdim=True).squeeze(-1).squeeze(-1)
117
+
118
+ return pixel_level_weight
119
+
120
+
121
+ def get_refined_artifact_map(img_gt, img_output, img_ema, ksize):
122
+ """Calculate the artifact map of LDL
123
+ (Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution. In CVPR 2022)
124
+
125
+ Args:
126
+ img_gt (Tensor): ground truth images.
127
+ img_output (Tensor): output images given by the optimizing model.
128
+ img_ema (Tensor): output images given by the ema model.
129
+ ksize (Int): size of the local window.
130
+
131
+ Returns:
132
+ overall_weight: weight for each pixel to be discriminated as an artifact pixel
133
+ (calculated based on both local and global observations).
134
+ """
135
+
136
+ residual_ema = torch.sum(torch.abs(img_gt - img_ema), 1, keepdim=True)
137
+ residual_sr = torch.sum(torch.abs(img_gt - img_output), 1, keepdim=True)
138
+
139
+ patch_level_weight = torch.var(residual_sr.clone(), dim=(-1, -2, -3), keepdim=True)**(1 / 5)
140
+ pixel_level_weight = get_local_weights(residual_sr.clone(), ksize)
141
+ overall_weight = patch_level_weight * pixel_level_weight
142
+
143
+ overall_weight[residual_sr < residual_ema] = 0
144
+
145
+ return overall_weight
StableSR/basicsr/metrics/README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Metrics
2
+
3
+ [English](README.md) **|** [简体中文](README_CN.md)
4
+
5
+ - [约定](#约定)
6
+ - [PSNR 和 SSIM](#psnr-和-ssim)
7
+
8
+ ## 约定
9
+
10
+ 因为不同的输入类型会导致结果的不同,因此我们对输入做如下约定:
11
+
12
+ - Numpy 类型 (一般是 cv2 的结果)
13
+ - UINT8: BGR, [0, 255], (h, w, c)
14
+ - float: BGR, [0, 1], (h, w, c). 一般作为中间结果
15
+ - Tensor 类型
16
+ - float: RGB, [0, 1], (n, c, h, w)
17
+
18
+ 其他约定:
19
+
20
+ - 以 `_pt` 结尾的是 PyTorch 结果
21
+ - PyTorch version 支持 batch 计算
22
+ - 颜色转换在 float32 上做;metric计算在 float64 上做
23
+
24
+ ## PSNR 和 SSIM
25
+
26
+ PSNR 和 SSIM 的结果趋势是一致的,即一般 PSNR 高,则 SSIM 也高。
27
+ 在实现上, PSNR 的各种实现都很一致。SSIM 有各种各样的实现,我们这里和 MATLAB 最原始版本保持 (参考 [NTIRE17比赛](https://competitions.codalab.org/competitions/16306#participate) 的 [evaluation代码](https://competitions.codalab.org/my/datasets/download/ebe960d8-0ec8-4846-a1a2-7c4a586a7378))
28
+
29
+ 下面列了各个实现的结果比对.
30
+ 总结:PyTorch 实现和 MATLAB 实现基本一致,在 GPU 运行上会有稍许差异
31
+
32
+ - PSNR 比对
33
+
34
+ |Image | Color Space | MATLAB | Numpy | PyTorch CPU | PyTorch GPU |
35
+ |:---| :---: | :---: | :---: | :---: | :---: |
36
+ |baboon| RGB | 20.419710 | 20.419710 | 20.419710 |20.419710 |
37
+ |baboon| Y | - |22.441898 | 22.441899 | 22.444916|
38
+ |comic | RGB | 20.239912 | 20.239912 | 20.239912 | 20.239912 |
39
+ |comic | Y | - | 21.720398 | 21.720398 | 21.721663|
40
+
41
+ - SSIM 比对
42
+
43
+ |Image | Color Space | MATLAB | Numpy | PyTorch CPU | PyTorch GPU |
44
+ |:---| :---: | :---: | :---: | :---: | :---: |
45
+ |baboon| RGB | 0.391853 | 0.391853 | 0.391853|0.391853 |
46
+ |baboon| Y | - |0.453097| 0.453097 | 0.453171|
47
+ |comic | RGB | 0.567738 | 0.567738 | 0.567738 | 0.567738|
48
+ |comic | Y | - | 0.585511 | 0.585511 | 0.585522 |