""" This file is used for deploying hugging face demo: https://huggingface.co/spaces/ """ import sys sys.path.append('StableSR') import os import cv2 import torch import torch.nn.functional as F import gradio as gr import torchvision from torchvision.transforms.functional import normalize from ldm.util import instantiate_from_config from torch import autocast import PIL import numpy as np from pytorch_lightning import seed_everything from contextlib import nullcontext from omegaconf import OmegaConf from PIL import Image import copy from scripts.wavelet_color_fix import wavelet_reconstruction, adaptive_instance_normalization from scripts.util_image import ImageSpliterTh from basicsr.utils.download_util import load_file_from_url from einops import rearrange, repeat # os.system("pip freeze") pretrain_model_url = { 'stablesr_512': 'https://huggingface.co/Iceclear/StableSR/resolve/main/stablesr_000117.ckpt', 'stablesr_768': 'https://huggingface.co/Iceclear/StableSR/resolve/main/stablesr_768v_000139.ckpt', 'CFW': 'https://huggingface.co/Iceclear/StableSR/resolve/main/vqgan_cfw_00011.ckpt', } # download weights if not os.path.exists('./stablesr_000117.ckpt'): load_file_from_url(url=pretrain_model_url['stablesr_512'], model_dir='./', progress=True, file_name=None) if not os.path.exists('./stablesr_768v_000139.ckpt'): load_file_from_url(url=pretrain_model_url['stablesr_768'], model_dir='./', progress=True, file_name=None) if not os.path.exists('./vqgan_cfw_00011.ckpt'): load_file_from_url(url=pretrain_model_url['CFW'], model_dir='./', progress=True, file_name=None) # download images torch.hub.download_url_to_file( 'https://raw.githubusercontent.com/zsyOAOA/ResShift/master/testdata/RealSet128/Lincoln.png', '01.png') torch.hub.download_url_to_file( 'https://raw.githubusercontent.com/zsyOAOA/ResShift/master/testdata/RealSet128/oldphoto6.png', '02.png') torch.hub.download_url_to_file( 'https://raw.githubusercontent.com/zsyOAOA/ResShift/master/testdata/RealSet128/comic2.png', '03.png') torch.hub.download_url_to_file( 'https://raw.githubusercontent.com/zsyOAOA/ResShift/master/testdata/RealSet128/OST_120.png', '04.png') torch.hub.download_url_to_file( 'https://raw.githubusercontent.com/zsyOAOA/ResShift/master/testdata/RealSet65/comic3.png', '05.png') def load_img(path): image = Image.open(path).convert("RGB") w, h = image.size w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 image = image.resize((w, h), resample=PIL.Image.LANCZOS) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2.*image - 1. def space_timesteps(num_timesteps, section_counts): """ Create a list of timesteps to use from an original diffusion process, given the number of timesteps we want to take from equally-sized portions of the original process. For example, if there's 300 timesteps and the section counts are [10,15,20] then the first 100 timesteps are strided to be 10 timesteps, the second 100 are strided to be 15 timesteps, and the final 100 are strided to be 20. If the stride is a string starting with "ddim", then the fixed striding from the DDIM paper is used, and only one section is allowed. :param num_timesteps: the number of diffusion steps in the original process to divide up. :param section_counts: either a list of numbers, or a string containing comma-separated numbers, indicating the step count per section. As a special case, use "ddimN" where N is a number of steps to use the striding from the DDIM paper. :return: a set of diffusion steps from the original process to use. """ if isinstance(section_counts, str): if section_counts.startswith("ddim"): desired_count = int(section_counts[len("ddim"):]) for i in range(1, num_timesteps): if len(range(0, num_timesteps, i)) == desired_count: return set(range(0, num_timesteps, i)) raise ValueError( f"cannot create exactly {num_timesteps} steps with an integer stride" ) section_counts = [int(x) for x in section_counts.split(",")] #[250,] size_per = num_timesteps // len(section_counts) extra = num_timesteps % len(section_counts) start_idx = 0 all_steps = [] for i, section_count in enumerate(section_counts): size = size_per + (1 if i < extra else 0) if size < section_count: raise ValueError( f"cannot divide section of {size} steps into {section_count}" ) if section_count <= 1: frac_stride = 1 else: frac_stride = (size - 1) / (section_count - 1) cur_idx = 0.0 taken_steps = [] for _ in range(section_count): taken_steps.append(start_idx + round(cur_idx)) cur_idx += frac_stride all_steps += taken_steps start_idx += size return set(all_steps) def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def load_model_from_config(config, ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=False) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) model.cuda() model.eval() return model # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = torch.device("cuda") vqgan_config = OmegaConf.load("./configs/autoencoder/autoencoder_kl_64x64x4_resi.yaml") vq_model = load_model_from_config(vqgan_config, './vqgan_cfw_00011.ckpt') vq_model = vq_model.to(device) os.makedirs('output', exist_ok=True) def inference(image, upscale, dec_w, seed, model_type, ddpm_steps, colorfix_type): """Run a single prediction on the model""" precision_scope = autocast vq_model.decoder.fusion_w = dec_w seed_everything(seed) if model_type == '512': config = OmegaConf.load("./configs/stableSRNew/v2-finetune_text_T_512.yaml") model = load_model_from_config(config, "./stablesr_000117.ckpt") min_size = 512 else: config = OmegaConf.load("./configs/stableSRNew/v2-finetune_text_T_768v.yaml") model = load_model_from_config(config, "./stablesr_768v_000139.ckpt") min_size = 768 model = model.to(device) model.configs = config model.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.0120, cosine_s=8e-3) model.num_timesteps = 1000 sqrt_alphas_cumprod = copy.deepcopy(model.sqrt_alphas_cumprod) sqrt_one_minus_alphas_cumprod = copy.deepcopy(model.sqrt_one_minus_alphas_cumprod) use_timesteps = set(space_timesteps(1000, [ddpm_steps])) last_alpha_cumprod = 1.0 new_betas = [] timestep_map = [] for i, alpha_cumprod in enumerate(model.alphas_cumprod): if i in use_timesteps: new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) last_alpha_cumprod = alpha_cumprod timestep_map.append(i) new_betas = [beta.data.cpu().numpy() for beta in new_betas] model.register_schedule(given_betas=np.array(new_betas), timesteps=len(new_betas)) model.num_timesteps = 1000 model.ori_timesteps = list(use_timesteps) model.ori_timesteps.sort() model = model.to(device) try: # global try with torch.no_grad(): with precision_scope("cuda"): with model.ema_scope(): init_image = load_img(image) init_image = F.interpolate( init_image, size=(int(init_image.size(-2)*upscale), int(init_image.size(-1)*upscale)), mode='bicubic', ) if init_image.size(-1) < min_size or init_image.size(-2) < min_size: ori_size = init_image.size() rescale = min_size * 1.0 / min(init_image.size(-2), init_image.size(-1)) new_h = max(int(ori_size[-2]*rescale), min_size) new_w = max(int(ori_size[-1]*rescale), min_size) init_template = F.interpolate( init_image, size=(new_h, new_w), mode='bicubic', ) else: init_template = init_image rescale = 1 init_template = init_template.clamp(-1, 1) assert init_template.size(-1) >= min_size assert init_template.size(-2) >= min_size init_template = init_template.type(torch.float16).to(device) if init_template.size(-1) <= 1280 or init_template.size(-2) <= 1280: init_latent_generator, enc_fea_lq = vq_model.encode(init_template) init_latent = model.get_first_stage_encoding(init_latent_generator) text_init = ['']*init_template.size(0) semantic_c = model.cond_stage_model(text_init) noise = torch.randn_like(init_latent) t = repeat(torch.tensor([999]), '1 -> b', b=init_image.size(0)) t = t.to(device).long() x_T = model.q_sample_respace(x_start=init_latent, t=t, sqrt_alphas_cumprod=sqrt_alphas_cumprod, sqrt_one_minus_alphas_cumprod=sqrt_one_minus_alphas_cumprod, noise=noise) if init_template.size(-1)<= min_size and init_template.size(-2) <= min_size: samples, _ = model.sample(cond=semantic_c, struct_cond=init_latent, batch_size=init_template.size(0), timesteps=ddpm_steps, time_replace=ddpm_steps, x_T=x_T, return_intermediates=True) else: samples, _ = model.sample_canvas(cond=semantic_c, struct_cond=init_latent, batch_size=init_template.size(0), timesteps=ddpm_steps, time_replace=ddpm_steps, x_T=x_T, return_intermediates=True, tile_size=int(min_size/8), tile_overlap=min_size//16, batch_size_sample=init_template.size(0)) x_samples = vq_model.decode(samples * 1. / model.scale_factor, enc_fea_lq) if colorfix_type == 'adain': x_samples = adaptive_instance_normalization(x_samples, init_template) elif colorfix_type == 'wavelet': x_samples = wavelet_reconstruction(x_samples, init_template) x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) else: im_spliter = ImageSpliterTh(init_template, 1280, 1000, sf=1) for im_lq_pch, index_infos in im_spliter: init_latent = model.get_first_stage_encoding(model.encode_first_stage(im_lq_pch)) # move to latent space text_init = ['']*init_latent.size(0) semantic_c = model.cond_stage_model(text_init) noise = torch.randn_like(init_latent) # If you would like to start from the intermediate steps, you can add noise to LR to the specific steps. t = repeat(torch.tensor([999]), '1 -> b', b=init_template.size(0)) t = t.to(device).long() x_T = model.q_sample_respace(x_start=init_latent, t=t, sqrt_alphas_cumprod=sqrt_alphas_cumprod, sqrt_one_minus_alphas_cumprod=sqrt_one_minus_alphas_cumprod, noise=noise) # x_T = noise samples, _ = model.sample_canvas(cond=semantic_c, struct_cond=init_latent, batch_size=im_lq_pch.size(0), timesteps=ddpm_steps, time_replace=ddpm_steps, x_T=x_T, return_intermediates=True, tile_size=int(min_size/8), tile_overlap=min_size//16, batch_size_sample=im_lq_pch.size(0)) _, enc_fea_lq = vq_model.encode(im_lq_pch) x_samples = vq_model.decode(samples * 1. / model.scale_factor, enc_fea_lq) if colorfix_type == 'adain': x_samples = adaptive_instance_normalization(x_samples, im_lq_pch) elif colorfix_type == 'wavelet': x_samples = wavelet_reconstruction(x_samples, im_lq_pch) im_spliter.update(x_samples, index_infos) x_samples = im_spliter.gather() x_samples = torch.clamp((x_samples+1.0)/2.0, min=0.0, max=1.0) if rescale > 1: x_samples = F.interpolate( x_samples, size=(int(init_image.size(-2)), int(init_image.size(-1))), mode='bicubic', ) x_samples = x_samples.clamp(0, 1) x_sample = 255. * rearrange(x_samples[0].cpu().numpy(), 'c h w -> h w c') restored_img = x_sample.astype(np.uint8) Image.fromarray(x_sample.astype(np.uint8)).save(f'output/out.png') return restored_img, f'output/out.png' except Exception as error: print('Global exception', error) return None, None title = "Exploiting Diffusion Prior for Real-World Image Super-Resolution" description = r"""