Spaces:
Runtime error
Runtime error
File size: 4,991 Bytes
82f993c a52454c 82f993c 1fe3117 87ccd86 82f993c 1fe3117 08d3bc5 e719620 e0731a8 1fe3117 e0731a8 e719620 1fe3117 82f993c 1fe3117 e719620 1fe3117 8dcade4 1fe3117 8dcade4 1fe3117 08d3bc5 1fe3117 82f993c 08d3bc5 82f993c 08d3bc5 82f993c 1fe3117 82f993c 1fe3117 82f993c 08d3bc5 1fe3117 08d3bc5 1fe3117 82f993c 08d3bc5 1fe3117 08d3bc5 1fe3117 82f993c 1fe3117 08d3bc5 1fe3117 82f993c 08d3bc5 1fe3117 1d98884 08d3bc5 1fe3117 1d98884 1fe3117 08d3bc5 1fe3117 82f993c 08d3bc5 1fe3117 1d98884 1fe3117 08d3bc5 1fe3117 1d98884 1fe3117 82f993c 1fe3117 1d98884 1fe3117 08d3bc5 1fe3117 08d3bc5 1fe3117 82f993c 1fe3117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
import transformers
# Perform cache migration
transformers.utils.move_cache()
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/sdxl-turbo", use_safetensors=True
)
pipe = pipe.to(device)
# Quantize the model
pipe.unet = torch.quantization.convert(pipe.unet, inplace=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512
def generate_image(
seed, prompt, negative_prompt, guidance_scale, num_inference_steps, width, height
):
try:
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image
except Exception as e:
print(f"Error generating image with seed {seed}: {e}")
return None
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
):
if randomize_seed:
seeds = [random.randint(0, MAX_SEED) for _ in range(2)]
else:
seeds = [seed, seed + 1]
images = []
for seed in seeds:
image = generate_image(
seed,
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
width,
height,
)
images.append(image)
return images
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
"""
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result1 = gr.Image(label="Result 1", show_label=False)
result2 = gr.Image(label="Result 2", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50, # Ensure the number of steps is reasonable
step=1,
value=2,
)
gr.Examples(examples=examples, inputs=[prompt])
run_button.click(
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result1, result2],
)
demo.queue().launch()
|