File size: 4,991 Bytes
82f993c
 
 
 
 
a52454c
 
 
 
82f993c
 
 
1fe3117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87ccd86
82f993c
1fe3117
 
08d3bc5
e719620
 
 
e0731a8
 
 
 
 
1fe3117
 
 
 
e0731a8
 
 
 
 
 
e719620
 
1fe3117
 
 
 
 
 
 
 
 
 
82f993c
 
1fe3117
e719620
1fe3117
8dcade4
1fe3117
8dcade4
 
 
 
 
 
 
 
 
 
1fe3117
08d3bc5
1fe3117
82f993c
08d3bc5
82f993c
 
 
 
 
 
08d3bc5
82f993c
1fe3117
 
82f993c
 
 
1fe3117
 
 
 
82f993c
 
08d3bc5
1fe3117
 
 
 
 
 
 
 
 
08d3bc5
1fe3117
 
 
 
 
 
82f993c
08d3bc5
1fe3117
08d3bc5
1fe3117
 
82f993c
1fe3117
08d3bc5
1fe3117
 
 
 
 
82f993c
08d3bc5
1fe3117
 
 
 
 
 
1d98884
08d3bc5
1fe3117
1d98884
1fe3117
08d3bc5
1fe3117
 
 
 
 
 
82f993c
08d3bc5
1fe3117
 
 
 
 
 
 
1d98884
1fe3117
08d3bc5
1fe3117
 
 
 
 
 
 
1d98884
1fe3117
 
 
 
 
 
 
82f993c
1fe3117
1d98884
1fe3117
 
08d3bc5
1fe3117
08d3bc5
 
 
 
 
 
 
 
1fe3117
82f993c
 
1fe3117
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
import transformers

# Perform cache migration
transformers.utils.move_cache()

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained(
        "stabilityai/sdxl-turbo",
        torch_dtype=torch.float16,
        variant="fp16",
        use_safetensors=True,
    )
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else:
    pipe = DiffusionPipeline.from_pretrained(
        "stabilityai/sdxl-turbo", use_safetensors=True
    )
    pipe = pipe.to(device)

    # Quantize the model
    pipe.unet = torch.quantization.convert(pipe.unet, inplace=True)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512


def generate_image(
    seed, prompt, negative_prompt, guidance_scale, num_inference_steps, width, height
):
    try:
        generator = torch.Generator().manual_seed(seed)
        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
        return image
    except Exception as e:
        print(f"Error generating image with seed {seed}: {e}")
        return None


def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
):

    if randomize_seed:
        seeds = [random.randint(0, MAX_SEED) for _ in range(2)]
    else:
        seeds = [seed, seed + 1]

    images = []
    for seed in seeds:
        image = generate_image(
            seed,
            prompt,
            negative_prompt,
            guidance_scale,
            num_inference_steps,
            width,
            height,
        )
        images.append(image)

    return images


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            f"""
        # Text-to-Image Gradio Template
        Currently running on {power_device}.
        """
        )

        with gr.Row():

            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result1 = gr.Image(label="Result 1", show_label=False)
        result2 = gr.Image(label="Result 2", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):

            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():

                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,  # Ensure the number of steps is reasonable
                    step=1,
                    value=2,
                )

        gr.Examples(examples=examples, inputs=[prompt])

    run_button.click(
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result1, result2],
    )

demo.queue().launch()