import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch import transformers # Perform cache migration transformers.utils.move_cache() device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained( "stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, ) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) else: pipe = DiffusionPipeline.from_pretrained( "stabilityai/sdxl-turbo", use_safetensors=True ) pipe = pipe.to(device) # Quantize the model pipe.unet = torch.quantization.convert(pipe.unet, inplace=True) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 512 def generate_image( seed, prompt, negative_prompt, guidance_scale, num_inference_steps, width, height ): try: generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image except Exception as e: print(f"Error generating image with seed {seed}: {e}") return None def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ): if randomize_seed: seeds = [random.randint(0, MAX_SEED) for _ in range(2)] else: seeds = [seed, seed + 1] images = [] for seed in seeds: image = generate_image( seed, prompt, negative_prompt, guidance_scale, num_inference_steps, width, height, ) images.append(image) return images examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( f""" # Text-to-Image Gradio Template Currently running on {power_device}. """ ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result1 = gr.Image(label="Result 1", show_label=False) result2 = gr.Image(label="Result 2", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, # Ensure the number of steps is reasonable step=1, value=2, ) gr.Examples(examples=examples, inputs=[prompt]) run_button.click( fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result1, result2], ) demo.queue().launch()