Spaces:
Build error
Build error
File size: 3,244 Bytes
3e5595b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
# Converts an RWKV model checkpoint in PyTorch format to an rwkv.cpp compatible file.
# Usage: python convert_pytorch_to_ggml.py C:\RWKV-4-Pile-169M-20220807-8023.pth C:\rwkv.cpp-169M.bin float32
# Get model checkpoints from https://huggingface.co/BlinkDL
# See FILE_FORMAT.md for the documentation on the file format.
import argparse
import struct
import torch
from typing import Dict
def parse_args():
parser = argparse.ArgumentParser(description='Convert an RWKV model checkpoint in PyTorch format to an rwkv.cpp compatible file')
parser.add_argument('src_path', help='Path to PyTorch checkpoint file')
parser.add_argument('dest_path', help='Path to rwkv.cpp checkpoint file, will be overwritten')
parser.add_argument('data_type', help='Data type, float16 or float32', type=str, choices=['float16', 'float32'], default='float32')
return parser.parse_args()
def get_layer_count(state_dict: Dict[str, torch.Tensor]) -> int:
n_layer = 0
while f'blocks.{n_layer}.ln1.weight' in state_dict:
n_layer += 1
assert n_layer > 0
return n_layer
def write_state_dict(state_dict: Dict[str, torch.Tensor], dest_path: str, data_type: str) -> None:
emb_weight: torch.Tensor = state_dict['emb.weight']
n_layer = get_layer_count(state_dict)
n_vocab = emb_weight.shape[0]
n_embed = emb_weight.shape[1]
with open(dest_path, 'wb') as out_file:
out_file.write(struct.pack(
# Disable padding with '='
'=iiiiii',
# Magic: 'ggmf' in hex
0x67676d66,
101,
n_vocab,
n_embed,
n_layer,
1 if data_type == 'float16' else 0
))
for k in state_dict.keys():
tensor = state_dict[k].float()
# Same processing as in "RWKV_in_150_lines.py"
if '.time_' in k:
# (1, 1, n_embed) -> (n_embed)
tensor = tensor.squeeze()
if '.time_decay' in k:
tensor = -torch.exp(tensor)
# Keep 1-dim vectors in fp32
if data_type == 'float16' and len(tensor.shape) > 1:
tensor = tensor.half()
shape = tensor.shape
print(f'Writing {k}, shape {shape}, type {tensor.dtype}')
k_encoded: bytes = k.encode('utf-8')
out_file.write(struct.pack(
'=iii',
len(shape),
len(k_encoded),
1 if tensor.dtype == torch.float16 else 0
))
# Dimension order is reversed here:
# * PyTorch shape is (x rows, y columns)
# * ggml shape is (y elements in a row, x elements in a column)
# Both shapes represent the same tensor.
for dim in reversed(tensor.shape):
out_file.write(struct.pack('=i', dim))
out_file.write(k_encoded)
tensor.numpy().tofile(out_file)
def main() -> None:
args = parse_args()
print(f'Reading {args.src_path}')
state_dict: Dict[str, torch.Tensor] = torch.load(args.src_path, map_location='cpu')
write_state_dict(state_dict, args.dest_path, args.data_type)
print('Done')
if __name__ == "__main__":
main() |