File size: 16,072 Bytes
69fb50e
f57d7c6
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
f57d7c6
 
69fb50e
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
 
 
 
69fb50e
 
 
 
 
 
 
 
 
9938c27
69fb50e
9938c27
69fb50e
9938c27
69fb50e
 
 
 
 
 
f57d7c6
 
 
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f57d7c6
69fb50e
 
 
 
 
 
 
 
 
46c2bfc
 
69fb50e
46c2bfc
69fb50e
 
 
 
 
 
46c2bfc
 
 
 
 
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9938c27
 
69fb50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#define LLAMA_API_INTERNAL
#include "build-info.h"
#include "common.h"
#include "ggml.h"
#include "llama.h"

#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <map>
#include <numeric>
#include <regex>
#include <string>
#include <unordered_map>
#include <vector>
#include <thread>
#include <mutex>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

struct quantize_stats_params {
    std::string model = "models/7B/ggml-model-f16.gguf";
    bool verbose = false;
    bool per_layer_stats = false;
    bool print_histogram = false;
    bool reference = false;
    std::vector<std::string> include_layers;
    std::vector<std::string> exclude_layers;
    std::vector<enum ggml_type> include_types;
};

constexpr size_t HISTOGRAM_BUCKETS = 150;
constexpr double HISTOGRAM_RANGE = 0.03;

struct error_stats {
    size_t num_samples;
    double total_error;
    double max_error;
    uint64_t error_histogram[HISTOGRAM_BUCKETS];
};

static void quantize_stats_print_usage(int /*argc*/, char ** argv) {
    quantize_stats_params params;
    fprintf(stderr, "usage: %s [options]\n", argv[0]);
    fprintf(stderr, "\n");
    fprintf(stderr, "options:\n");
    fprintf(stderr, "  -h, --help            show this help message and exit\n");
    fprintf(stderr, "  -m FNAME, --model FNAME\n");
    fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());
    fprintf(stderr, "  -r, --reference\n");
    fprintf(stderr, "                        use reference implementation (default: false)\n");
    fprintf(stderr, "  -v, --verbose\n");
    fprintf(stderr, "                        verbose output (default: false)\n");
    fprintf(stderr, "  -p, --per-layer-stats\n");
    fprintf(stderr, "                        print stats per layer (default: false)\n");
    fprintf(stderr, "  --histogram\n");
    fprintf(stderr, "                        print error histogram (default: false)\n");
    fprintf(stderr, "  -l LAYER, --include-layer LAYER\n");
    fprintf(stderr, "                        only test layers matching pattern\n");
    fprintf(stderr, "  -L LAYER, --exclude-layer LAYER\n");
    fprintf(stderr, "                        exclude layers matching pattern\n");
    fprintf(stderr, "  -t TYPE, --type TYPE\n");
    fprintf(stderr, "                        only test given type (q4_0, q4_1)\n");
    fprintf(stderr, "\n");
}

// Check if a layer is included/excluded by command line
static bool layer_included(const quantize_stats_params & params, const std::string & layer) {
    for (const auto& excluded : params.exclude_layers) {
        if (std::regex_search(layer, std::regex(excluded))) {
            return false;
        }
    }
    for (const auto& included : params.include_layers) {
        if (std::regex_search(layer, std::regex(included))) {
            return true;
        }
    }
    return params.include_layers.empty();
}

// Update error statistics given vectors with the before/after result of quantization
static void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
    for (int64_t i = 0; i < nelements; i++) {
        double diff = input[i] - output[i];
        stats.total_error += diff * diff;
        stats.max_error = fmax(fabs(diff), stats.max_error);
        stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
    }
    stats.num_samples += nelements;
}

static void combine_error_stats(error_stats & into, const error_stats & from) {
    into.num_samples += from.num_samples;
    into.total_error += from.total_error;
    if (from.max_error > into.max_error) into.max_error = from.max_error;
    for (size_t i=0; i<HISTOGRAM_BUCKETS; ++i) into.error_histogram[i] += from.error_histogram[i];
}

static double find_quantile(const error_stats & stats, double quantile) {
    double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);

    double accum = 0;
    for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
        accum += stats.error_histogram[i];
        if (accum >= sum*quantile) {
            return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
        }
    }
    return INFINITY;
}

static void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
    double rmse = sqrt(stats.total_error / (double) stats.num_samples);
    double median = find_quantile(stats, .5);
    double pct95 = find_quantile(stats, .95);
    printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median);
    if (print_histogram) {
        printf("Error distribution:\n");
        for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
            double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
            double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
            if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
            printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
        }
    }
}

// copied from ggml.h - verify that we can access this as a flat array
static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

    return
        tensor->nb[0] == ggml_type_size(tensor->type) &&
        tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
        tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
        tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}

static void test_roundtrip_on_chunk(
    const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits_t & qfns, bool use_reference,
    float * input_scratch, char * quantized_scratch, float * output_scratch, error_stats & stats
) {
    if (layer->type == GGML_TYPE_F16) {
        for (int i = 0; i < chunk_size; i++) {
            input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
        }
    } else {
        input_scratch = ggml_get_data_f32(layer) + offset;
    }

    if (use_reference) {
        qfns.from_float_reference(input_scratch, quantized_scratch, chunk_size);
    } else {
        qfns.from_float(input_scratch, quantized_scratch, chunk_size);
    }
    qfns.to_float(quantized_scratch, output_scratch, chunk_size);

    update_error_stats(chunk_size, input_scratch, output_scratch, stats);
}


// Run quantization function for a single layer and update error stats
static void test_roundtrip_on_layer(
    std::string & name, bool print_layer_stats, const ggml_type_traits_t & qfns, bool use_reference,
    const ggml_tensor * layer, std::vector<float> & input_scratch, std::vector<char> & quantized_scratch,
    std::vector<float> & output_scratch, error_stats & total_error, int max_thread = 0
) {
    assert(tensor_is_contiguous(layer));
    error_stats layer_error {};
    uint64_t nelements = ggml_nelements(layer);

    float* input_scratch_ptr = nullptr;
    if (layer->type == GGML_TYPE_F16) {
        if (input_scratch.size() < nelements) input_scratch.resize(nelements);
        input_scratch_ptr = input_scratch.data();
    }
    if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements);
    if (output_scratch.size() < nelements) output_scratch.resize(nelements);

    if (max_thread < 1) max_thread = std::thread::hardware_concurrency();
    int chunk_size = 32*512;
    int num_chunks = (nelements + chunk_size - 1)/chunk_size;

    if (num_chunks < 2 || max_thread < 2) {
        test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(),
                output_scratch.data(), print_layer_stats ? layer_error : total_error);
    } else {
        auto & stats = print_layer_stats ? layer_error : total_error;
        std::mutex mutex;
        uint64_t counter = 0;
        auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr,
             &quantized_scratch, &output_scratch, chunk_size] () {
            error_stats local_stats {};
            while (true) {
                std::unique_lock<std::mutex> lock(mutex);
                uint64_t offset = counter; counter += chunk_size;
                if (offset >= nelements) {
                    combine_error_stats(stats, local_stats);
                    break;
                }
                lock.unlock();
                uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
                test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset,
                        quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats);
            }
        };
        int nthread = std::min(num_chunks, max_thread);
        std::vector<std::thread> workers(nthread-1);
        for (auto& w : workers) w = std::thread(compute);
        compute();
        for (auto& w : workers) w.join();
    }

    if (print_layer_stats) {
        print_error_stats(name, layer_error, false);
        combine_error_stats(total_error, layer_error);
    }
}

int main(int argc, char ** argv) {
    ggml_time_init();

    quantize_stats_params params;

    // read command line

    int max_thread = 0;
    bool invalid_param = false;
    std::string arg;
    for (int i = 1; i < argc; i++) {
        arg = argv[i];

        if (arg == "-h" || arg == "--help") {
            quantize_stats_print_usage(argc, argv);
            exit(0);
        } else if (arg == "-r" || arg == "--reference") {
            params.reference = true;
        } else if (arg == "-v") {
            params.verbose = true;
        } else if (arg == "-p" || arg == "--per-layer-stats") {
            params.per_layer_stats = true;
        } else if (arg == "--histogram") {
            params.print_histogram = true;
        } else if (arg == "-m" || arg == "--model") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.model = argv[i];
        } else if (arg == "-l" || arg == "--include-layer") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.include_layers.push_back(argv[i]);
        } else if (arg == "-L" || arg == "--exclude-layer") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.exclude_layers.push_back(argv[i]);
        } else if (arg == "-t" || arg == "--type") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            int j;
            for (j = 0; j < GGML_TYPE_COUNT; ++j) {
               const auto * name = ggml_type_name((ggml_type) j);
               if (name && strcmp(argv[i], name) == 0) break;
            }
            if (j < GGML_TYPE_COUNT) {
                params.include_types.push_back((ggml_type) j);
            } else {
                fprintf(stderr, "error: %s not in list of types\n", argv[i]);
                invalid_param = true;
            }
        } else if (arg == "-n" || arg == "--num-threads") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            max_thread = atoi(argv[i]);
        } else {
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
            quantize_stats_print_usage(argc, argv);
            return 1;
        }
    }
    if (invalid_param) {
        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
        quantize_stats_print_usage(argc, argv);
        return 1;
    }

    print_build_info();

    // load the model
    fprintf(stderr, "Loading model\n");

    const int64_t t_main_start_us = ggml_time_us();
    llama_model * model;
    llama_context * ctx;

    {
        auto mparams = llama_model_default_params();
        mparams.use_mlock  = false;

        model = llama_load_model_from_file(params.model.c_str(), mparams);

        if (model == NULL) {
            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
            return 1;
        }

        auto cparams = llama_context_default_params();
        cparams.n_ctx      = 256;
        cparams.seed       = 1;
        cparams.f16_kv     = false;

        ctx = llama_new_context_with_model(model, cparams);

        if (ctx == NULL) {
            fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
            llama_free_model(model);
            return 1;
        }
    }

    const auto &tensors = llama_internal_get_tensor_map(ctx);

    // check layer tensors
    int included_layers = 0;
    int64_t max_nelements = 0;
    bool is_f16 = false;
    for (const auto& kv_tensor : tensors) {
        if (!layer_included(params, kv_tensor.first)) {
            continue;
        }
        if (params.verbose) {
            printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second));
        }
        if (kv_tensor.second->type == GGML_TYPE_F16) {
            is_f16 = true;
        } else if (kv_tensor.second->type != GGML_TYPE_F32) {
            fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
                "this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
            llama_free(ctx);
            llama_free_model(model);
            return 1;
        }
        included_layers++;
        max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
    }

    if (is_f16) {
        printf("note: source model is f16\n");
    }
    printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
    // allocate scratch space
    std::vector<float> input_scratch;
    std::vector<char> quantized_scratch;
    std::vector<float> output_scratch;

    // loop throught quantization types
    for (int i = 0; i < GGML_TYPE_COUNT; i++) {
        const ggml_type type = (ggml_type) i;
        if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
            continue;
        }
        ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
        if (qfns.from_float && qfns.to_float) {
            if (params.verbose) {
                printf("testing %s ...\n",  ggml_type_name(type));
            }

            error_stats global_stats {};

            for (const auto& kv_tensor : tensors) {
                if (!layer_included(params, kv_tensor.first)) {
                    continue;
                }
                if (params.verbose) {
                    printf("  %s ...\n",  kv_tensor.first.c_str());
                }
                std::string layer_name { ggml_type_name(type) };
                layer_name += "::" + kv_tensor.first;
                test_roundtrip_on_layer(
                        layer_name,
                        params.per_layer_stats,
                        qfns,
                        params.reference,
                        kv_tensor.second,
                        input_scratch,
                        quantized_scratch,
                        output_scratch,
                        global_stats,
                        max_thread
                );
            }

            print_error_stats(ggml_type_name(type), global_stats, params.print_histogram);
        }
    }


    llama_free(ctx);
    llama_free_model(model);
    // report timing
    {
        const int64_t t_main_end_us = ggml_time_us();

        printf("\n");
        printf("%s:    total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
    }

    return 0;
}