File size: 5,099 Bytes
9938c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edc20ac
9938c27
 
 
 
 
 
 
 
 
 
edc20ac
 
9938c27
edc20ac
 
9938c27
edc20ac
 
9938c27
edc20ac
 
 
 
 
 
 
9938c27
edc20ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9938c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
const paramDefaults = {
  stream: true,
  n_predict: 500,
  temperature: 0.2,
  stop: ["</s>"]
};

let generation_settings = null;


// Completes the prompt as a generator. Recommended for most use cases.
//
// Example:
//
//    import { llama } from '/completion.js'
//
//    const request = llama("Tell me a joke", {n_predict: 800})
//    for await (const chunk of request) {
//      document.write(chunk.data.content)
//    }
//
export async function* llama(prompt, params = {}, config = {}) {
  let controller = config.controller;

  if (!controller) {
    controller = new AbortController();
  }

  const completionParams = { ...paramDefaults, ...params, prompt };

  const response = await fetch("/completion", {
    method: 'POST',
    body: JSON.stringify(completionParams),
    headers: {
      'Connection': 'keep-alive',
      'Content-Type': 'application/json',
      'Accept': 'text/event-stream'
    },
    signal: controller.signal,
  });

  const reader = response.body.getReader();
  const decoder = new TextDecoder();

  let content = "";
  let leftover = ""; // Buffer for partially read lines

  try {
    let cont = true;

    while (cont) {
      const result = await reader.read();
      if (result.done) {
        break;
      }

      // Add any leftover data to the current chunk of data
      const text = leftover + decoder.decode(result.value);

      // Check if the last character is a line break
      const endsWithLineBreak = text.endsWith('\n');

      // Split the text into lines
      let lines = text.split('\n');

      // If the text doesn't end with a line break, then the last line is incomplete
      // Store it in leftover to be added to the next chunk of data
      if (!endsWithLineBreak) {
        leftover = lines.pop();
      } else {
        leftover = ""; // Reset leftover if we have a line break at the end
      }

      // Parse all sse events and add them to result
      const regex = /^(\S+):\s(.*)$/gm;
      for (const line of lines) {
        const match = regex.exec(line);
        if (match) {
          result[match[1]] = match[2]
          // since we know this is llama.cpp, let's just decode the json in data
          if (result.data) {
            result.data = JSON.parse(result.data);
            content += result.data.content;

            // yield
            yield result;

            // if we got a stop token from server, we will break here
            if (result.data.stop) {
              if (result.data.generation_settings) {
                generation_settings = result.data.generation_settings;
              }
              cont = false;
              break;
            }
          }
        }
      }
    }
  } catch (e) {
    if (e.name !== 'AbortError') {
      console.error("llama error: ", e);
    }
    throw e;
  }
  finally {
    controller.abort();
  }

  return content;
}

// Call llama, return an event target that you can subcribe to
//
// Example:
//
//    import { llamaEventTarget } from '/completion.js'
//
//    const conn = llamaEventTarget(prompt)
//    conn.addEventListener("message", (chunk) => {
//      document.write(chunk.detail.content)
//    })
//
export const llamaEventTarget = (prompt, params = {}, config = {}) => {
  const eventTarget = new EventTarget();
  (async () => {
    let content = "";
    for await (const chunk of llama(prompt, params, config)) {
      if (chunk.data) {
        content += chunk.data.content;
        eventTarget.dispatchEvent(new CustomEvent("message", { detail: chunk.data }));
      }
      if (chunk.data.generation_settings) {
        eventTarget.dispatchEvent(new CustomEvent("generation_settings", { detail: chunk.data.generation_settings }));
      }
      if (chunk.data.timings) {
        eventTarget.dispatchEvent(new CustomEvent("timings", { detail: chunk.data.timings }));
      }
    }
    eventTarget.dispatchEvent(new CustomEvent("done", { detail: { content } }));
  })();
  return eventTarget;
}

// Call llama, return a promise that resolves to the completed text. This does not support streaming
//
// Example:
//
//     llamaPromise(prompt).then((content) => {
//       document.write(content)
//     })
//
//     or
//
//     const content = await llamaPromise(prompt)
//     document.write(content)
//
export const llamaPromise = (prompt, params = {}, config = {}) => {
  return new Promise(async (resolve, reject) => {
    let content = "";
    try {
      for await (const chunk of llama(prompt, params, config)) {
        content += chunk.data.content;
      }
      resolve(content);
    } catch (error) {
      reject(error);
    }
  });
};

/**
 * (deprecated)
 */
export const llamaComplete = async (params, controller, callback) => {
  for await (const chunk of llama(params.prompt, params, { controller })) {
    callback(chunk);
  }
}

// Get the model info from the server. This is useful for getting the context window and so on.
export const llamaModelInfo = async () => {
  if (!generation_settings) {
    generation_settings = await fetch("/model.json").then(r => r.json());
  }
  return generation_settings;
}