Spaces:
Build error
Build error
// Defined when llama.cpp is compiled with support for offloading model layers to GPU. | |
extern "C" { | |
// | |
// C interface | |
// | |
// TODO: show sample usage | |
// | |
struct llama_context; | |
typedef int llama_token; | |
typedef struct llama_token_data { | |
llama_token id; // token id | |
float logit; // log-odds of the token | |
float p; // probability of the token | |
} llama_token_data; | |
typedef struct llama_token_data_array { | |
llama_token_data * data; | |
size_t size; | |
bool sorted; | |
} llama_token_data_array; | |
typedef void (*llama_progress_callback)(float progress, void *ctx); | |
struct llama_context_params { | |
int n_ctx; // text context | |
int n_batch; // prompt processing batch size | |
int n_gpu_layers; // number of layers to store in VRAM | |
int main_gpu; // the GPU that is used for scratch and small tensors | |
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs | |
int seed; // RNG seed, -1 for random | |
bool f16_kv; // use fp16 for KV cache | |
bool logits_all; // the llama_eval() call computes all logits, not just the last one | |
bool vocab_only; // only load the vocabulary, no weights | |
bool use_mmap; // use mmap if possible | |
bool use_mlock; // force system to keep model in RAM | |
bool embedding; // embedding mode only | |
// called with a progress value between 0 and 1, pass NULL to disable | |
llama_progress_callback progress_callback; | |
// context pointer passed to the progress callback | |
void * progress_callback_user_data; | |
}; | |
// model file types | |
enum llama_ftype { | |
LLAMA_FTYPE_ALL_F32 = 0, | |
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 | |
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed | |
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed | |
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors | |
}; | |
// model quantization parameters | |
typedef struct llama_model_quantize_params { | |
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency() | |
enum llama_ftype ftype; // quantize to this llama_ftype | |
bool allow_requantize; // allow quantizing non-f32/f16 tensors | |
bool quantize_output_tensor; // quantize output.weight | |
} llama_model_quantize_params; | |
LLAMA_API struct llama_context_params llama_context_default_params(); | |
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(); | |
LLAMA_API bool llama_mmap_supported(); | |
LLAMA_API bool llama_mlock_supported(); | |
// TODO: not great API - very likely to change | |
// Initialize the llama + ggml backend | |
// Call once at the start of the program | |
LLAMA_API void llama_init_backend(); | |
LLAMA_API int64_t llama_time_us(); | |
// Various functions for loading a ggml llama model. | |
// Allocate (almost) all memory needed for the model. | |
// Return NULL on failure | |
LLAMA_API struct llama_context * llama_init_from_file( | |
const char * path_model, | |
struct llama_context_params params); | |
// Frees all allocated memory | |
LLAMA_API void llama_free(struct llama_context * ctx); | |
// Returns 0 on success | |
LLAMA_API int llama_model_quantize( | |
const char * fname_inp, | |
const char * fname_out, | |
const llama_model_quantize_params * params); | |
// Apply a LoRA adapter to a loaded model | |
// path_base_model is the path to a higher quality model to use as a base for | |
// the layers modified by the adapter. Can be NULL to use the current loaded model. | |
// The model needs to be reloaded before applying a new adapter, otherwise the adapter | |
// will be applied on top of the previous one | |
// Returns 0 on success | |
LLAMA_API int llama_apply_lora_from_file( | |
struct llama_context * ctx, | |
const char * path_lora, | |
const char * path_base_model, | |
int n_threads); | |
// Returns the number of tokens in the KV cache | |
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx); | |
// Sets the current rng seed. | |
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed); | |
// Returns the maximum size in bytes of the state (rng, logits, embedding | |
// and kv_cache) - will often be smaller after compacting tokens | |
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx); | |
// Copies the state to the specified destination address. | |
// Destination needs to have allocated enough memory. | |
// Returns the number of bytes copied | |
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst); | |
// Set the state reading from the specified address | |
// Returns the number of bytes read | |
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src); | |
// Save/load session file | |
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out); | |
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count); | |
// Run the llama inference to obtain the logits and probabilities for the next token. | |
// tokens + n_tokens is the provided batch of new tokens to process | |
// n_past is the number of tokens to use from previous eval calls | |
// Returns 0 on success | |
LLAMA_API int llama_eval( | |
struct llama_context * ctx, | |
const llama_token * tokens, | |
int n_tokens, | |
int n_past, | |
int n_threads); | |
// Export a static computation graph for context of 511 and batch size of 1 | |
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these | |
// parameters here to keep things simple | |
// IMPORTANT: do not use for anything else other than debugging and testing! | |
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname); | |
// Convert the provided text into tokens. | |
// The tokens pointer must be large enough to hold the resulting tokens. | |
// Returns the number of tokens on success, no more than n_max_tokens | |
// Returns a negative number on failure - the number of tokens that would have been returned | |
// TODO: not sure if correct | |
LLAMA_API int llama_tokenize( | |
struct llama_context * ctx, | |
const char * text, | |
llama_token * tokens, | |
int n_max_tokens, | |
bool add_bos); | |
LLAMA_API int llama_n_vocab(const struct llama_context * ctx); | |
LLAMA_API int llama_n_ctx (const struct llama_context * ctx); | |
LLAMA_API int llama_n_embd (const struct llama_context * ctx); | |
// Get the vocabulary as output parameters. | |
// Returns number of results. | |
LLAMA_API int llama_get_vocab( | |
const struct llama_context * ctx, | |
const char * * strings, | |
float * scores, | |
int capacity); | |
// Token logits obtained from the last call to llama_eval() | |
// The logits for the last token are stored in the last row | |
// Can be mutated in order to change the probabilities of the next token | |
// Rows: n_tokens | |
// Cols: n_vocab | |
LLAMA_API float * llama_get_logits(struct llama_context * ctx); | |
// Get the embeddings for the input | |
// shape: [n_embd] (1-dimensional) | |
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); | |
// Token Id -> String. Uses the vocabulary in the provided context | |
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token); | |
// Special tokens | |
LLAMA_API llama_token llama_token_bos(); | |
LLAMA_API llama_token llama_token_eos(); | |
LLAMA_API llama_token llama_token_nl(); | |
// Sampling functions | |
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. | |
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty); | |
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. | |
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence); | |
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. | |
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates); | |
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 | |
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep); | |
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 | |
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep); | |
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. | |
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep); | |
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. | |
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep); | |
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp); | |
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. | |
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. | |
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. | |
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. | |
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. | |
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. | |
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu); | |
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. | |
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. | |
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. | |
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. | |
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. | |
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu); | |
/// @details Selects the token with the highest probability. | |
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates); | |
/// @details Randomly selects a token from the candidates based on their probabilities. | |
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates); | |
// Performance information | |
LLAMA_API void llama_print_timings(struct llama_context * ctx); | |
LLAMA_API void llama_reset_timings(struct llama_context * ctx); | |
// Print system information | |
LLAMA_API const char * llama_print_system_info(void); | |
} | |
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only | |
struct ggml_tensor; | |
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx); | |