Spaces:
Build error
Build error
// Defines fileno on msys: | |
// available llama models | |
enum e_model { | |
MODEL_UNKNOWN, | |
MODEL_3B, | |
MODEL_7B, | |
MODEL_13B, | |
MODEL_30B, | |
MODEL_65B, | |
}; | |
static const size_t MB = 1024*1024; | |
// computed for n_ctx == 2048 | |
// TODO: dynamically determine these sizes | |
// needs modifications in ggml | |
typedef void (*offload_func_t)(struct ggml_tensor * tensor); | |
void llama_nop(struct ggml_tensor * tensor) { // don't offload by default | |
(void) tensor; | |
} | |
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0() | |
{ | |
static std::map<e_model, size_t> k_sizes = { | |
{ MODEL_3B, 256ull * MB }, | |
{ MODEL_7B, 512ull * MB }, | |
{ MODEL_13B, 512ull * MB }, | |
{ MODEL_30B, 640ull * MB }, | |
{ MODEL_65B, 1024ull * MB }, | |
}; | |
return k_sizes; | |
} | |
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1() | |
{ | |
static std::map<e_model, size_t> k_sizes = { | |
{ MODEL_3B, 256ull * MB }, | |
{ MODEL_7B, 512ull * MB }, | |
{ MODEL_13B, 512ull * MB }, | |
{ MODEL_30B, 640ull * MB }, | |
{ MODEL_65B, 1024ull * MB }, | |
}; | |
return k_sizes; | |
} | |
// 2*n_embd*n_ctx*n_layer*sizeof(float16) | |
static const std::map<e_model, size_t> & MEM_REQ_KV_SELF() | |
{ | |
static std::map<e_model, size_t> k_sizes = { | |
{ MODEL_3B, 682ull * MB }, | |
{ MODEL_7B, 1026ull * MB }, | |
{ MODEL_13B, 1608ull * MB }, | |
{ MODEL_30B, 3224ull * MB }, | |
{ MODEL_65B, 5120ull * MB }, | |
}; | |
return k_sizes; | |
} | |
// this is mostly needed for temporary mul_mat buffers to dequantize the data | |
// not actually needed if BLAS is disabled | |
static const std::map<e_model, size_t> & MEM_REQ_EVAL() | |
{ | |
static std::map<e_model, size_t> k_sizes = { | |
{ MODEL_3B, 512ull * MB }, | |
{ MODEL_7B, 800ull * MB }, | |
{ MODEL_13B, 1024ull * MB }, | |
{ MODEL_30B, 1380ull * MB }, | |
{ MODEL_65B, 1536ull * MB }, | |
}; | |
return k_sizes; | |
} | |
// default hparams (LLaMA 7B) | |
struct llama_hparams { | |
uint32_t n_vocab = 32000; | |
uint32_t n_ctx = 512; // this is provided as user input? | |
uint32_t n_embd = 4096; | |
uint32_t n_mult = 256; | |
uint32_t n_head = 32; | |
uint32_t n_layer = 32; | |
uint32_t n_rot = 64; | |
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; | |
bool operator!=(const llama_hparams & other) const { | |
return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); | |
} | |
}; | |
struct llama_layer { | |
// normalization | |
struct ggml_tensor * attention_norm; | |
// attention | |
struct ggml_tensor * wq; | |
struct ggml_tensor * wk; | |
struct ggml_tensor * wv; | |
struct ggml_tensor * wo; | |
// normalization | |
struct ggml_tensor * ffn_norm; | |
// ff | |
struct ggml_tensor * w1; | |
struct ggml_tensor * w2; | |
struct ggml_tensor * w3; | |
}; | |
struct llama_kv_cache { | |
struct ggml_tensor * k; | |
struct ggml_tensor * v; | |
struct ggml_context * ctx = NULL; | |
llama_ctx_buffer buf; | |
int n; // number of tokens currently in the cache | |
~llama_kv_cache() { | |
if (ctx) { | |
ggml_free(ctx); | |
} | |
ggml_cuda_free_data(k); | |
ggml_cuda_free_data(v); | |
} | |
}; | |
struct llama_vocab { | |
using id = int32_t; | |
using token = std::string; | |
struct token_score { | |
token tok; | |
float score; | |
}; | |
std::unordered_map<token, id> token_to_id; | |
std::vector<token_score> id_to_token; | |
}; | |
struct llama_model { | |
e_model type = MODEL_UNKNOWN; | |
llama_hparams hparams; | |
struct ggml_tensor * tok_embeddings; | |
struct ggml_tensor * norm; | |
struct ggml_tensor * output; | |
std::vector<llama_layer> layers; | |
int n_gpu_layers; | |
// context | |
struct ggml_context * ctx = NULL; | |
// the model memory buffer | |
llama_ctx_buffer buf; | |
// model memory mapped file | |
std::unique_ptr<llama_mmap> mapping; | |
// objects representing data potentially being locked in memory | |
llama_mlock mlock_buf; | |
llama_mlock mlock_mmap; | |
// for quantize-stats only | |
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name; | |
int64_t t_load_us = 0; | |
int64_t t_start_us = 0; | |
llama_vocab vocab; | |
~llama_model() { | |
if (ctx) { | |
ggml_free(ctx); | |
} | |
for (size_t i = 0; i < tensors_by_name.size(); ++i) { | |
ggml_cuda_free_data(tensors_by_name[i].second); | |
} | |
ggml_cuda_free_scratch(); | |
for (size_t i = 0; i < tensors_by_name.size(); ++i) { | |
ggml_cl_free_data(tensors_by_name[i].second); | |
} | |
} | |
}; | |
struct llama_context { | |
llama_context(const llama_model & model, const llama_vocab & vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {} | |
std::mt19937 rng; | |
bool has_evaluated_once = false; | |
int64_t t_sample_us = 0; | |
int64_t t_eval_us = 0; | |
int64_t t_p_eval_us = 0; | |
int32_t n_sample = 0; // number of tokens sampled | |
int32_t n_eval = 0; // number of eval calls | |
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) | |
const llama_model & model; | |
const llama_vocab & vocab; | |
bool model_owner = false; | |
int64_t t_load_us; | |
int64_t t_start_us; | |
// key + value cache for the self attention | |
struct llama_kv_cache kv_self; | |
size_t mem_per_token = 0; | |
// decode output (2-dimensional array: [n_tokens][n_vocab]) | |
std::vector<float> logits; | |
bool logits_all = false; | |
// input embedding (1-dimensional array: [n_embd]) | |
std::vector<float> embedding; | |
// memory buffers used to evaluate the model | |
// TODO: move in llama_state | |
llama_ctx_buffer buf_compute; | |
llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS]; | |
ggml_metal_context * ctx_metal = NULL; | |
int buf_last = 0; | |
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 }; | |
void use_buf(struct ggml_context * ctx, int i) { | |
size_t last_size = 0; | |
if (i == -1) { | |
last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, }); | |
} else { | |
auto & buf = buf_scratch[i]; | |
last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, }); | |
} | |
if (buf_last >= 0) { | |
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size); | |
} | |
buf_last = i; | |
(void) i; | |
(void) ctx; | |
} | |
size_t get_buf_max_mem(int i) const { | |
return buf_max_size[i]; | |
(void) i; | |
return 0; | |
} | |
}; | |
template <typename T> | |
static T checked_mul(T a, T b) { | |
T ret = a * b; | |
if (a != 0 && ret / a != b) { | |
throw std::runtime_error(format("overflow multiplying %llu * %llu", | |
(unsigned long long) a, (unsigned long long) b)); | |
} | |
return ret; | |
} | |
static size_t checked_div(size_t a, size_t b) { | |
if (b == 0 || a % b != 0) { | |
throw std::runtime_error(format("error dividing %zu / %zu", a, b)); | |
} | |
return a / b; | |
} | |
static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) { | |
char buf[256]; | |
snprintf(buf, sizeof(buf), "%5u", ne.at(0)); | |
for (size_t i = 1; i < ne.size(); i++) { | |
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i)); | |
} | |
return buf; | |
} | |
static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) { | |
size_t size = ggml_type_size(type); | |
for (uint32_t dim : ne) { | |
size = checked_mul<size_t>(size, dim); | |
} | |
return size / ggml_blck_size(type); | |
} | |
struct llama_load_tensor_shard { | |
std::vector<uint32_t> ne; | |
size_t size; | |
enum ggml_type type; | |
size_t file_idx; | |
size_t file_off; | |
void calc_size() { | |
size = llama_calc_tensor_size(ne, type); | |
} | |
}; | |
enum llama_split_type { | |
SPLIT_NONE, | |
SPLIT_BY_COLUMNS, | |
SPLIT_BY_ROWS | |
}; | |
struct llama_load_tensor { | |
std::vector<llama_load_tensor_shard> shards; | |
std::string name; | |
enum ggml_type type = GGML_TYPE_F32; | |
llama_split_type split_type = SPLIT_NONE; | |
std::vector<uint32_t> ne; | |
size_t size; | |
struct ggml_tensor * ggml_tensor = NULL; | |
uint8_t * data; | |
llama_load_tensor(const std::string & name) : name(name) {} | |
void calc_all() { | |
calc_type(); | |
calc_split_type(); | |
calc_ne(); | |
calc_size(); | |
} | |
void calc_type() { | |
const auto & first_shard = shards.at(0); | |
for (const auto & shard : shards) { | |
if (shard.type != first_shard.type) { | |
throw std::runtime_error(format("inconsistent tensor shard type in '%s'", name.c_str())); | |
} | |
} | |
type = first_shard.type; | |
} | |
void calc_split_type() { | |
if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file | |
shards.size() == 1) { // only one file? | |
split_type = SPLIT_NONE; | |
} else if (name.find("tok_embeddings.") == 0 || | |
name.find(".attention.wo.weight") != std::string::npos || | |
name.find(".feed_forward.w2.weight") != std::string::npos) { | |
split_type = SPLIT_BY_COLUMNS; | |
} else { | |
split_type = SPLIT_BY_ROWS; | |
} | |
} | |
void calc_ne() { | |
const auto & first_shard = shards.at(0); | |
for (const auto & shard : shards) { | |
if (shard.ne != first_shard.ne) { | |
throw std::runtime_error(format("inconsistent tensor shard shape in '%s': first was %s, other was %s", | |
name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str())); | |
} | |
} | |
ne = first_shard.ne; | |
LLAMA_ASSERT(shards.size() <= UINT32_MAX); | |
uint32_t n_shards = (uint32_t) shards.size(); | |
switch (split_type) { | |
case SPLIT_NONE: | |
ne = first_shard.ne; | |
break; | |
case SPLIT_BY_COLUMNS: | |
ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards), | |
first_shard.ne[1]}; | |
break; | |
case SPLIT_BY_ROWS: | |
ne = {first_shard.ne[0], | |
checked_mul<uint32_t>(first_shard.ne[1], n_shards)}; | |
break; | |
} | |
} | |
void calc_size() { | |
size = llama_calc_tensor_size(ne, type); | |
} | |
}; | |
struct llama_load_tensors_map { | |
// tensors is kept in a separate vector to preserve file order | |
std::vector<llama_load_tensor> tensors; | |
std::unordered_map<std::string, size_t> name_to_idx; | |
}; | |
enum llama_file_version { | |
LLAMA_FILE_VERSION_GGML, | |
LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab | |
LLAMA_FILE_VERSION_GGJT_V1, // added padding | |
LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format | |
LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format | |
}; | |
struct llama_file_loader { | |
llama_file file; | |
llama_file_version file_version; | |
llama_hparams hparams; | |
llama_vocab vocab; | |
llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map) | |
: file(fname, "rb") { | |
fprintf(stderr, "llama.cpp: loading model from %s\n", fname); | |
read_magic(); | |
read_hparams(); | |
read_vocab(); | |
read_tensor_metadata(file_idx, tensors_map); | |
} | |
void read_magic() { | |
uint32_t magic = file.read_u32(); | |
if (magic == LLAMA_FILE_MAGIC_GGML) { | |
file_version = LLAMA_FILE_VERSION_GGML; | |
return; | |
} | |
uint32_t version = file.read_u32(); | |
switch (magic) { | |
case LLAMA_FILE_MAGIC_GGMF: | |
switch (version) { | |
case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return; | |
} | |
break; | |
case LLAMA_FILE_MAGIC_GGJT: | |
switch (version) { | |
case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return; | |
case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return; | |
case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return; | |
} | |
} | |
throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?", | |
magic, version)); | |
} | |
void read_hparams() { | |
hparams.n_vocab = file.read_u32(); | |
hparams.n_embd = file.read_u32(); | |
hparams.n_mult = file.read_u32(); | |
hparams.n_head = file.read_u32(); | |
hparams.n_layer = file.read_u32(); | |
hparams.n_rot = file.read_u32(); | |
hparams.ftype = (enum llama_ftype) file.read_u32(); | |
} | |
void read_vocab() { | |
vocab.id_to_token.resize(hparams.n_vocab); | |
for (uint32_t i = 0; i < hparams.n_vocab; i++) { | |
uint32_t len = file.read_u32(); | |
std::string word = file.read_string(len); | |
float score = 0.0f; | |
if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) { | |
file.read_raw(&score, sizeof(score)); | |
} | |
vocab.token_to_id[word] = i; | |
auto & tok_score = vocab.id_to_token[i]; | |
tok_score.tok = std::move(word); | |
tok_score.score = score; | |
} | |
} | |
void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) { | |
while (file.tell() < file.size) { | |
llama_load_tensor_shard shard; | |
uint32_t n_dims = file.read_u32(); | |
uint32_t name_len = file.read_u32(); | |
shard.type = (enum ggml_type) file.read_u32(); | |
shard.ne.resize(n_dims); | |
file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims); | |
std::string name = file.read_string(name_len); | |
if (n_dims < 1 || n_dims > 2) { | |
throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims)); | |
} | |
switch (shard.type) { | |
case GGML_TYPE_F32: | |
case GGML_TYPE_F16: | |
case GGML_TYPE_Q4_0: | |
case GGML_TYPE_Q4_1: | |
case GGML_TYPE_Q5_0: | |
case GGML_TYPE_Q5_1: | |
case GGML_TYPE_Q8_0: | |
case GGML_TYPE_Q2_K: | |
case GGML_TYPE_Q3_K: | |
case GGML_TYPE_Q4_K: | |
case GGML_TYPE_Q5_K: | |
case GGML_TYPE_Q6_K: | |
break; | |
default: { | |
throw std::runtime_error(format("unrecognized tensor type %u\n", shard.type)); | |
} | |
} | |
if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) { | |
// skip to the next multiple of 32 bytes | |
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR); | |
} | |
shard.file_idx = file_idx; | |
shard.file_off = file.tell(); | |
shard.calc_size(); | |
file.seek(shard.size, SEEK_CUR); | |
auto it = tensors_map.name_to_idx.find(name); | |
size_t idx; | |
if (it != tensors_map.name_to_idx.end()) { | |
idx = it->second; | |
} else { | |
tensors_map.tensors.emplace_back(name); | |
idx = tensors_map.tensors.size() - 1; | |
tensors_map.name_to_idx.emplace(name, idx); | |
} | |
tensors_map.tensors.at(idx).shards.push_back(shard); | |
} | |
} | |
}; | |
struct llama_file_saver { | |
llama_file file; | |
llama_file_loader * any_file_loader; | |
llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype) | |
: file(fname, "wb"), any_file_loader(any_file_loader) { | |
fprintf(stderr, "llama.cpp: saving model to %s\n", fname); | |
write_magic(); | |
write_hparams(new_ftype); | |
write_vocab(); | |
} | |
void write_magic() { | |
file.write_u32(LLAMA_FILE_MAGIC); // magic | |
file.write_u32(LLAMA_FILE_VERSION); // version | |
} | |
void write_hparams(enum llama_ftype new_ftype) { | |
const llama_hparams & hparams = any_file_loader->hparams; | |
file.write_u32(hparams.n_vocab); | |
file.write_u32(hparams.n_embd); | |
file.write_u32(hparams.n_mult); | |
file.write_u32(hparams.n_head); | |
file.write_u32(hparams.n_layer); | |
file.write_u32(hparams.n_rot); | |
file.write_u32(new_ftype); | |
} | |
void write_vocab() { | |
if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) { | |
fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n"); | |
} | |
uint32_t n_vocab = any_file_loader->hparams.n_vocab; | |
for (uint32_t i = 0; i < n_vocab; i++) { | |
const auto & token_score = any_file_loader->vocab.id_to_token.at(i); | |
file.write_u32((uint32_t) token_score.tok.size()); | |
file.write_raw(token_score.tok.data(), token_score.tok.size()); | |
file.write_raw(&token_score.score, sizeof(token_score.score)); | |
} | |
} | |
void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) { | |
switch (new_type) { | |
case GGML_TYPE_F32: | |
case GGML_TYPE_F16: | |
case GGML_TYPE_Q4_0: | |
case GGML_TYPE_Q4_1: | |
case GGML_TYPE_Q5_0: | |
case GGML_TYPE_Q5_1: | |
case GGML_TYPE_Q8_0: | |
case GGML_TYPE_Q2_K: | |
case GGML_TYPE_Q3_K: | |
case GGML_TYPE_Q4_K: | |
case GGML_TYPE_Q5_K: | |
case GGML_TYPE_Q6_K: | |
break; | |
default: LLAMA_ASSERT(false); | |
} | |
file.write_u32((uint32_t) tensor.ne.size()); | |
file.write_u32((uint32_t) tensor.name.size()); | |
file.write_u32(new_type); | |
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size()); | |
file.write_raw(tensor.name.data(), tensor.name.size()); | |
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR); | |
LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type)); | |
file.write_raw(new_data, new_size); | |
} | |
}; | |
struct llama_model_loader { | |
std::vector<std::unique_ptr<llama_file_loader>> file_loaders; | |
llama_load_tensors_map tensors_map; | |
bool use_mmap; | |
size_t num_ggml_tensors_created = 0; | |
struct ggml_context * ggml_ctx = NULL; | |
std::unique_ptr<llama_mmap> mapping; | |
llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) { | |
auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map); | |
file_loaders.emplace_back(first_file); | |
uint32_t n_parts = vocab_only ? 1 : guess_n_parts(); | |
for (uint32_t i = 1; i < n_parts; i++) { | |
std::string fname = fname_base + "." + std::to_string(i); | |
auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map); | |
file_loaders.emplace_back(ith_file); | |
if (ith_file->hparams != first_file->hparams) { | |
throw std::runtime_error(format("llama.cpp: hparams inconsistent between files")); | |
} | |
} | |
if (!llama_mmap::SUPPORTED) { | |
use_mmap = false; | |
} | |
if (use_mmap && alignment_prevents_mmap()) { | |
fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n"); | |
use_mmap = false; | |
} | |
this->use_mmap = use_mmap; | |
for (llama_load_tensor & lt : tensors_map.tensors) { | |
lt.calc_all(); | |
} | |
} | |
bool alignment_prevents_mmap() { | |
for (const llama_load_tensor & lt : tensors_map.tensors) { | |
for (const llama_load_tensor_shard & shard : lt.shards) { | |
if (shard.file_off & 3) { | |
return true; | |
} | |
} | |
} | |
return false; | |
} | |
uint32_t guess_n_parts() const { | |
auto it = tensors_map.name_to_idx.find("tok_embeddings.weight"); | |
if (it == tensors_map.name_to_idx.end()) { | |
throw std::runtime_error(std::string("missing tok_embeddings.weight")); | |
} | |
const llama_load_tensor & lt = tensors_map.tensors.at(it->second); | |
return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0); | |
} | |
void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const { | |
*ctx_size_p = *mmapped_size_p = 0; | |
for (const llama_load_tensor & lt : tensors_map.tensors) { | |
*ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE; | |
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size; | |
} | |
} | |
struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) { | |
auto it = tensors_map.name_to_idx.find(name); | |
if (it == tensors_map.name_to_idx.end()) { | |
throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str()))); | |
} | |
llama_load_tensor & lt = tensors_map.tensors.at(it->second); | |
if (lt.ne != ne) { | |
throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s", | |
name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str())); | |
} | |
return get_tensor_for(lt, backend); | |
} | |
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) { | |
struct ggml_tensor * tensor; | |
if (backend != GGML_BACKEND_CPU) { | |
ggml_set_no_alloc(ggml_ctx, true); | |
} | |
if (lt.ne.size() == 2) { | |
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); | |
} else { | |
LLAMA_ASSERT(lt.ne.size() == 1); | |
tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0)); | |
} | |
ggml_set_name(tensor, lt.name.c_str()); | |
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor | |
if (backend != GGML_BACKEND_CPU) { | |
ggml_set_no_alloc(ggml_ctx, use_mmap); | |
} | |
tensor->backend = backend; | |
lt.ggml_tensor = tensor; | |
num_ggml_tensors_created++; | |
return tensor; | |
} | |
void done_getting_tensors() const { | |
if (num_ggml_tensors_created != tensors_map.tensors.size()) { | |
throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected")); | |
} | |
} | |
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) { | |
size_t data_size = 0; | |
size_t prefetch_size = 0; | |
size_t lock_size = 0; | |
for (const llama_load_tensor & lt : tensors_map.tensors) { | |
data_size += lt.size; | |
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { | |
prefetch_size += lt.size; | |
} | |
} | |
if (use_mmap) { | |
mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size)); | |
if (lmlock) { | |
lmlock->init(mapping->addr); | |
} | |
} | |
size_t done_size = 0; | |
for (llama_load_tensor & lt : tensors_map.tensors) { | |
if (progress_callback) { | |
progress_callback((float) done_size / data_size, progress_callback_user_data); | |
} | |
LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already | |
lt.data = (uint8_t *) lt.ggml_tensor->data; | |
// allocate temp buffer if not using mmap | |
if (!use_mmap && lt.data == NULL) { | |
GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU); | |
lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor)); | |
} | |
load_data_for(lt); | |
switch(lt.ggml_tensor->backend) { | |
case GGML_BACKEND_CPU: | |
lt.ggml_tensor->data = lt.data; | |
if (use_mmap && lmlock) { | |
lock_size += lt.size; | |
lmlock->grow_to(lock_size); | |
} | |
break; | |
case GGML_BACKEND_GPU: | |
case GGML_BACKEND_GPU_SPLIT: | |
ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor); | |
if (!use_mmap) { | |
free(lt.data); | |
} | |
break; | |
case GGML_BACKEND_GPU: | |
ggml_cl_transform_tensor(lt.data, lt.ggml_tensor); | |
if (!use_mmap) { | |
free(lt.data); | |
} | |
break; | |
default: | |
continue; | |
} | |
done_size += lt.size; | |
} | |
} | |
void load_data_for(llama_load_tensor & lt) { | |
if (use_mmap) { | |
LLAMA_ASSERT(lt.shards.size() == 1); | |
lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off; | |
} else if (lt.split_type == SPLIT_NONE) { | |
llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file; | |
file.seek(lt.shards.at(0).file_off, SEEK_SET); | |
file.read_raw(lt.data, lt.size); | |
} else if (lt.split_type == SPLIT_BY_ROWS) { | |
size_t offset = 0; | |
for (llama_load_tensor_shard & shard : lt.shards) { | |
llama_file & file = file_loaders.at(shard.file_idx)->file; | |
file.seek(shard.file_off, SEEK_SET); | |
file.read_raw(lt.data + offset, shard.size); | |
offset += shard.size; | |
} | |
LLAMA_ASSERT(offset == lt.size); | |
} else if (lt.split_type == SPLIT_BY_COLUMNS) { | |
// Let's load the data into temporary buffers to ensure the OS performs large loads. | |
std::vector<llama_buffer> tmp_bufs(lt.shards.size()); | |
for (size_t i = 0; i < lt.shards.size(); i++) { | |
llama_load_tensor_shard & shard = lt.shards.at(i); | |
llama_file & file = file_loaders.at(shard.file_idx)->file; | |
file.seek(shard.file_off, SEEK_SET); | |
tmp_bufs.at(i).resize(shard.size); | |
file.read_raw(tmp_bufs.at(i).addr, shard.size); | |
} | |
// Then reshape. | |
size_t num_rows = lt.ne.at(1); | |
size_t per_shard_row_size = lt.shards.at(0).size / num_rows; | |
size_t out_offset = 0; | |
for (size_t row = 0; row < num_rows; row++) { | |
for (llama_buffer & tmp_buf : tmp_bufs) { | |
memcpy(lt.data + out_offset, | |
tmp_buf.addr + row * per_shard_row_size, | |
per_shard_row_size); | |
out_offset += per_shard_row_size; | |
} | |
} | |
LLAMA_ASSERT(out_offset == lt.size); | |
} | |
if (0) { | |
print_checksum(lt); | |
} | |
} | |
static void print_checksum(llama_load_tensor & lt) { | |
uint32_t sum = 0; | |
for (size_t i = 0; i < lt.size; i++) { | |
uint8_t byte = lt.data[i]; | |
sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash | |
} | |
fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum, | |
llama_format_tensor_shape(lt.ne).c_str(), lt.size); | |
} | |
}; | |
// | |
// kv cache | |
// | |
static bool kv_cache_init( | |
const struct llama_hparams & hparams, | |
struct llama_kv_cache & cache, | |
ggml_type wtype, | |
int n_ctx, | |
int n_gpu_layers) { | |
const int n_embd = hparams.n_embd; | |
const int n_layer = hparams.n_layer; | |
const int64_t n_mem = n_layer*n_ctx; | |
const int64_t n_elements = n_embd*n_mem; | |
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); | |
cache.n = 0; | |
struct ggml_init_params params; | |
params.mem_size = cache.buf.size; | |
params.mem_buffer = cache.buf.addr; | |
params.no_alloc = false; | |
cache.ctx = ggml_init(params); | |
if (!cache.ctx) { | |
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); | |
return false; | |
} | |
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); | |
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); | |
ggml_set_name(cache.k, "cache_k"); | |
ggml_set_name(cache.v, "cache_v"); | |
(void) n_gpu_layers; | |
if (n_gpu_layers > n_layer + 1) { | |
ggml_cuda_assign_buffers_no_scratch(cache.v); | |
} | |
if (n_gpu_layers > n_layer + 2) { | |
ggml_cuda_assign_buffers_no_scratch(cache.k); | |
} | |
return true; | |
} | |
struct llama_context_params llama_context_default_params() { | |
struct llama_context_params result = { | |
/*.seed =*/ -1, | |
/*.n_ctx =*/ 512, | |
/*.n_batch =*/ 512, | |
/*.gpu_layers =*/ 0, | |
/*.main_gpu =*/ 0, | |
/*.tensor_split =*/ {0}, | |
/*.progress_callback =*/ nullptr, | |
/*.progress_callback_user_data =*/ nullptr, | |
/*.low_vram =*/ false, | |
/*.f16_kv =*/ true, | |
/*.logits_all =*/ false, | |
/*.vocab_only =*/ false, | |
/*.use_mmap =*/ true, | |
/*.use_mlock =*/ false, | |
/*.embedding =*/ false, | |
}; | |
return result; | |
} | |
struct llama_model_quantize_params llama_model_quantize_default_params() { | |
struct llama_model_quantize_params result = { | |
/*.nthread =*/ 0, | |
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1, | |
/*.allow_requantize =*/ false, | |
/*.quantize_output_tensor =*/ true, | |
}; | |
return result; | |
} | |
bool llama_mmap_supported() { | |
return llama_mmap::SUPPORTED; | |
} | |
bool llama_mlock_supported() { | |
return llama_mlock::SUPPORTED; | |
} | |
void llama_init_backend() { | |
ggml_time_init(); | |
// needed to initialize f16 tables | |
{ | |
struct ggml_init_params params = { 0, NULL, false }; | |
struct ggml_context * ctx = ggml_init(params); | |
ggml_free(ctx); | |
} | |
} | |
int64_t llama_time_us() { | |
return ggml_time_us(); | |
} | |
// | |
// model loading | |
// | |
static const char *llama_file_version_name(llama_file_version version) { | |
switch (version) { | |
case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)"; | |
case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)"; | |
case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)"; | |
case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)"; | |
case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)"; | |
} | |
return "unknown"; | |
} | |
static const char *llama_ftype_name(enum llama_ftype ftype) { | |
switch (ftype) { | |
case LLAMA_FTYPE_ALL_F32: return "all F32"; | |
case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16"; | |
case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; | |
case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; | |
case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: | |
return "mostly Q4_1, some F16"; | |
case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0"; | |
case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1"; | |
case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0"; | |
// K-quants | |
case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K"; | |
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small"; | |
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium"; | |
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large"; | |
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small"; | |
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium"; | |
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small"; | |
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium"; | |
case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K"; | |
default: return "unknown, may not work"; | |
} | |
} | |
static const char *llama_model_type_name(e_model type) { | |
switch (type) { | |
case MODEL_3B: return "3B"; | |
case MODEL_7B: return "7B"; | |
case MODEL_13B: return "13B"; | |
case MODEL_30B: return "30B"; | |
case MODEL_65B: return "65B"; | |
default: LLAMA_ASSERT(false); | |
} | |
} | |
static void llama_model_load_internal( | |
const std::string & fname, | |
llama_model & model, | |
llama_vocab & vocab, | |
int n_ctx, | |
int n_batch, | |
int n_gpu_layers, | |
int main_gpu, | |
const float * tensor_split, | |
bool low_vram, | |
ggml_type memory_type, | |
bool use_mmap, | |
bool use_mlock, | |
bool vocab_only, | |
llama_progress_callback progress_callback, | |
void * progress_callback_user_data) { | |
model.t_start_us = ggml_time_us(); | |
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only)); | |
vocab = std::move(ml->file_loaders.at(0)->vocab); | |
model.hparams = ml->file_loaders.at(0)->hparams; | |
model.n_gpu_layers = n_gpu_layers; | |
llama_file_version file_version = ml->file_loaders.at(0)->file_version; | |
auto & hparams = model.hparams; | |
{ | |
switch (hparams.n_layer) { | |
case 26: model.type = e_model::MODEL_3B; break; | |
case 32: model.type = e_model::MODEL_7B; break; | |
case 40: model.type = e_model::MODEL_13B; break; | |
case 60: model.type = e_model::MODEL_30B; break; | |
case 80: model.type = e_model::MODEL_65B; break; | |
default: | |
{ | |
if (hparams.n_layer < 32) { | |
model.type = e_model::MODEL_7B; | |
} | |
} break; | |
} | |
hparams.n_ctx = n_ctx; | |
} | |
const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; | |
{ | |
fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version)); | |
fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab); | |
fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx); | |
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd); | |
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult); | |
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); | |
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); | |
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); | |
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); | |
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); | |
fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size()); | |
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); | |
} | |
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) { | |
if (hparams.ftype != LLAMA_FTYPE_ALL_F32 && | |
hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 && | |
hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) { | |
printf("\nthis format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"); | |
} | |
} | |
if (file_version < LLAMA_FILE_VERSION_GGJT_V3) { | |
if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || | |
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 || | |
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) { | |
printf("\nthis format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"); | |
} | |
} | |
if (vocab_only) { | |
return; | |
} | |
auto & ctx = model.ctx; | |
size_t ctx_size; | |
size_t mmapped_size; | |
ml->calc_sizes(&ctx_size, &mmapped_size); | |
fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0); | |
// create the ggml context | |
{ | |
model.buf.resize(ctx_size); | |
if (use_mlock) { | |
model.mlock_buf.init(model.buf.addr); | |
model.mlock_buf.grow_to(model.buf.size); | |
} | |
struct ggml_init_params params = { | |
/*.mem_size =*/ model.buf.size, | |
/*.mem_buffer =*/ model.buf.addr, | |
/*.no_alloc =*/ ml->use_mmap, | |
}; | |
model.ctx = ggml_init(params); | |
if (!model.ctx) { | |
throw std::runtime_error(format("ggml_init() failed")); | |
} | |
} | |
(void) main_gpu; | |
fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__); | |
ggml_cuda_set_main_device(main_gpu); | |
fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__); | |
// prepare memory for the weights | |
size_t vram_weights = 0; | |
size_t vram_scratch = 0; | |
{ | |
const uint32_t n_embd = hparams.n_embd; | |
const uint32_t n_layer = hparams.n_layer; | |
const uint32_t n_vocab = hparams.n_vocab; | |
ml->ggml_ctx = ctx; | |
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU); | |
// "output" tensor | |
{ | |
ggml_backend backend_norm; | |
ggml_backend backend_output; | |
if (n_gpu_layers > int(n_layer)) { // NOLINT | |
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying | |
// on Windows however this is detrimental unless everything is on the GPU | |
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | |
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; | |
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; | |
} else { | |
backend_norm = GGML_BACKEND_CPU; | |
backend_output = GGML_BACKEND_CPU; | |
} | |
model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm); | |
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output); | |
if (backend_norm == GGML_BACKEND_GPU) { | |
vram_weights += ggml_nbytes(model.norm); | |
} | |
if (backend_output == GGML_BACKEND_GPU_SPLIT) { | |
vram_weights += ggml_nbytes(model.output); | |
} | |
} | |
const int i_gpu_start = n_layer - n_gpu_layers; | |
model.layers.resize(n_layer); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT | |
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT | |
auto & layer = model.layers[i]; | |
std::string layers_i = "layers." + std::to_string(i); | |
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend); | |
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split); | |
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split); | |
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split); | |
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split); | |
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend); | |
layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split); | |
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split); | |
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split); | |
if (backend == GGML_BACKEND_GPU) { | |
vram_weights += | |
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + | |
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + | |
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); | |
} | |
} | |
} | |
ml->done_getting_tensors(); | |
// print memory requirements | |
{ | |
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1; | |
// this is the total memory required to run the inference | |
const size_t mem_required = | |
ctx_size + | |
mmapped_size - vram_weights + // weights in VRAM not in memory | |
MEM_REQ_SCRATCH0().at(model.type) + | |
MEM_REQ_SCRATCH1().at(model.type) + | |
MEM_REQ_EVAL().at (model.type); | |
// this is the memory required by one llama_state | |
const size_t mem_required_state = | |
scale*MEM_REQ_KV_SELF().at(model.type); | |
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, | |
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); | |
(void) vram_scratch; | |
(void) n_batch; | |
if (low_vram) { | |
fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__); | |
ggml_cuda_set_scratch_size(0); // disable scratch | |
} else { | |
vram_scratch = n_batch * MB; | |
ggml_cuda_set_scratch_size(vram_scratch); | |
if (n_gpu_layers > 0) { | |
fprintf(stderr, "%s: allocating batch_size x 1 MB = %zd MB VRAM for the scratch buffer\n", | |
__func__, vram_scratch / MB); | |
} | |
} | |
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); | |
fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); | |
if (n_gpu_layers > (int) hparams.n_layer) { | |
fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__); | |
} | |
size_t vram_kv_cache = 0; | |
if (n_gpu_layers > (int) hparams.n_layer + 1) { | |
if (low_vram) { | |
fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__); | |
} else { | |
fprintf(stderr, "%s: offloading v cache to GPU\n", __func__); | |
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2; | |
} | |
} | |
if (n_gpu_layers > (int) hparams.n_layer + 2) { | |
if (low_vram) { | |
fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__); | |
} else { | |
fprintf(stderr, "%s: offloading k cache to GPU\n", __func__); | |
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2; | |
} | |
} | |
const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3; | |
fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n", | |
__func__, std::min(n_gpu_layers, max_offloadable_layers), hparams.n_layer + 3); | |
fprintf(stderr, "%s: total VRAM used: %zu MB\n", | |
__func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up | |
(void) n_gpu_layers; | |
} | |
// populate `tensors_by_name` | |
for (llama_load_tensor & lt : ml->tensors_map.tensors) { | |
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor); | |
} | |
(void) tensor_split; | |
{ | |
ggml_cuda_set_tensor_split(tensor_split); | |
} | |
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL); | |
if (progress_callback) { | |
progress_callback(1.0f, progress_callback_user_data); | |
} | |
model.mapping = std::move(ml->mapping); | |
// loading time will be recalculate after the first eval, so | |
// we take page faults deferred by mmap() into consideration | |
model.t_load_us = ggml_time_us() - model.t_start_us; | |
} | |
static bool llama_model_load( | |
const std::string & fname, | |
llama_model & model, | |
llama_vocab & vocab, | |
int n_ctx, | |
int n_batch, | |
int n_gpu_layers, | |
int main_gpu, | |
float * tensor_split, | |
bool low_vram, | |
ggml_type memory_type, | |
bool use_mmap, | |
bool use_mlock, | |
bool vocab_only, | |
llama_progress_callback progress_callback, | |
void *progress_callback_user_data) { | |
try { | |
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type, | |
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); | |
return true; | |
} catch (const std::exception & err) { | |
fprintf(stderr, "error loading model: %s\n", err.what()); | |
return false; | |
} | |
} | |
// evaluate the transformer | |
// | |
// - lctx: llama context | |
// - tokens: new batch of tokens to process | |
// - n_past: the context size so far | |
// - n_threads: number of threads to use | |
// - cgraph_fname: filename of the exported computation graph | |
// | |
static bool llama_eval_internal( | |
llama_context & lctx, | |
const llama_token * tokens, | |
const int n_tokens, | |
const int n_past, | |
const int n_threads, | |
const char * cgraph_fname) { | |
// // enforce that the first token is BOS | |
// if (n_past == 0 && tokens[0] != llama_token_bos()) { | |
// fprintf(stderr, "%s: first token must be BOS\n", __func__); | |
// return false; | |
// } | |
const int64_t t_start_us = ggml_time_us(); | |
const int N = n_tokens; | |
const auto & model = lctx.model; | |
const auto & hparams = model.hparams; | |
const auto & kv_self = lctx.kv_self; | |
LLAMA_ASSERT(!!kv_self.ctx); | |
const int n_embd = hparams.n_embd; | |
const int n_layer = hparams.n_layer; | |
const int n_ctx = hparams.n_ctx; | |
const int n_head = hparams.n_head; | |
const int n_vocab = hparams.n_vocab; | |
const int n_rot = hparams.n_embd/hparams.n_head; | |
const int n_gpu_layers = model.n_gpu_layers; | |
auto & mem_per_token = lctx.mem_per_token; | |
auto & buf_compute = lctx.buf_compute; | |
struct ggml_init_params params = { | |
/*.mem_size =*/ buf_compute.size, | |
/*.mem_buffer =*/ buf_compute.addr, | |
/*.no_alloc =*/ false, | |
}; | |
struct ggml_context * ctx0 = ggml_init(params); | |
// for big prompts, if BLAS is enabled, it is better to use only one thread | |
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance | |
ggml_cgraph gf = {}; | |
gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads; | |
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); | |
ggml_set_name(embd, "embd"); | |
memcpy(embd->data, tokens, N*ggml_element_size(embd)); | |
struct ggml_tensor * cur; | |
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); | |
const int i_gpu_start = n_layer - n_gpu_layers; | |
(void) i_gpu_start; | |
// offload functions set the tensor output backend to GPU | |
// tensors are GPU-accelerated if any input or the output has been offloaded | |
// | |
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal | |
// in that case ggml_cuda_assign_buffers has no effect | |
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating | |
offload_func_t offload_func_kq = llama_nop; | |
offload_func_t offload_func_v = llama_nop; | |
if (n_gpu_layers > n_layer) { | |
offload_func_nr = ggml_cuda_assign_buffers; | |
} | |
if (n_gpu_layers > n_layer + 1) { | |
offload_func_v = ggml_cuda_assign_buffers; | |
} | |
if (n_gpu_layers > n_layer + 2) { | |
offload_func_kq = ggml_cuda_assign_buffers; | |
} | |
for (int il = 0; il < n_layer; ++il) { | |
offload_func_t offload_func = llama_nop; | |
if (il >= i_gpu_start) { | |
offload_func = ggml_cuda_assign_buffers; | |
} | |
struct ggml_tensor * inpSA = inpL; | |
lctx.use_buf(ctx0, 0); | |
// norm | |
{ | |
cur = ggml_rms_norm(ctx0, inpL); | |
offload_func(cur); | |
ggml_set_name(cur, "rms_norm_0"); | |
// cur = cur*attention_norm(broadcasted) | |
cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm); | |
offload_func(cur); | |
ggml_set_name(cur, "attention_norm_0"); | |
} | |
// self-attention | |
{ | |
// compute Q and K and RoPE them | |
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); | |
offload_func_kq(tmpk); | |
ggml_set_name(tmpk, "tmpk"); | |
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); | |
offload_func_kq(tmpq); | |
ggml_set_name(tmpq, "tmpq"); | |
struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0); | |
offload_func_kq(Kcur); | |
ggml_set_name(Kcur, "Kcur"); | |
struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0); | |
offload_func_kq(Qcur); | |
ggml_set_name(Qcur, "Qcur"); | |
// store key and value to memory | |
{ | |
// compute the transposed [N, n_embd] V matrix | |
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur); | |
offload_func_v(tmpv); | |
ggml_set_name(tmpv, "tmpv"); | |
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N)); | |
offload_func_v(Vcur); | |
ggml_set_name(Vcur, "Vcur"); | |
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); | |
offload_func_kq(k); | |
ggml_set_name(k, "k"); | |
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, | |
( n_ctx)*ggml_element_size(kv_self.v), | |
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); | |
offload_func_v(v); | |
ggml_set_name(v, "v"); | |
// important: storing RoPE-ed version of K in the KV cache! | |
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); | |
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); | |
} | |
struct ggml_tensor * Q = | |
ggml_permute(ctx0, | |
Qcur, | |
0, 2, 1, 3); | |
offload_func_kq(Q); | |
ggml_set_name(Q, "Q"); | |
struct ggml_tensor * K = | |
ggml_permute(ctx0, | |
ggml_reshape_3d(ctx0, | |
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd), | |
n_embd/n_head, n_head, n_past + N), | |
0, 2, 1, 3); | |
offload_func_kq(K); | |
ggml_set_name(K, "K"); | |
// K * Q | |
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); | |
offload_func_kq(KQ); | |
ggml_set_name(KQ, "KQ"); | |
// KQ_scaled = KQ / sqrt(n_embd/n_head) | |
struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)); | |
ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)"); | |
// KQ_scaled shape [n_past + N, N, n_head, 1] | |
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); | |
offload_func_kq(KQ_scaled); | |
ggml_set_name(KQ_scaled, "KQ_scaled"); | |
// KQ_masked = mask_past(KQ_scaled) | |
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); | |
offload_func_kq(KQ_masked); | |
ggml_set_name(KQ_masked, "KQ_masked"); | |
// KQ = soft_max(KQ_masked) | |
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); | |
offload_func_v(KQ_soft_max); | |
ggml_set_name(KQ_soft_max, "KQ_soft_max"); | |
// split cached V into n_head heads | |
struct ggml_tensor * V = | |
ggml_view_3d(ctx0, kv_self.v, | |
n_past + N, n_embd/n_head, n_head, | |
n_ctx*ggml_element_size(kv_self.v), | |
n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head, | |
il*n_ctx*ggml_element_size(kv_self.v)*n_embd); | |
offload_func_v(V); | |
ggml_set_name(V, "V"); | |
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); | |
offload_func_v(KQV); | |
ggml_set_name(KQV, "KQV"); | |
// make V contiguous in memory to speed up the matmul, however we waste time on the copy | |
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation | |
// is there a better way? | |
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head)); | |
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); | |
// KQV_merged = KQV.permute(0, 2, 1, 3) | |
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | |
offload_func_v(KQV_merged); | |
ggml_set_name(KQV_merged, "KQV_merged"); | |
// cur = KQV_merged.contiguous().view(n_embd, N) | |
cur = ggml_cpy(ctx0, | |
KQV_merged, | |
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); | |
offload_func_v(cur); | |
ggml_set_name(cur, "KQV_merged_contiguous"); | |
// projection (no bias) | |
cur = ggml_mul_mat(ctx0, | |
model.layers[il].wo, | |
cur); | |
offload_func(cur); | |
ggml_set_name(cur, "result_wo"); | |
} | |
lctx.use_buf(ctx0, 1); | |
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); | |
offload_func(inpFF); | |
ggml_set_name(inpFF, "inpFF"); | |
// feed-forward network | |
{ | |
// norm | |
{ | |
cur = ggml_rms_norm(ctx0, inpFF); | |
offload_func(cur); | |
ggml_set_name(cur, "rms_norm_1"); | |
// cur = cur*ffn_norm(broadcasted) | |
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); | |
offload_func(cur); | |
ggml_set_name(cur, "ffn_norm"); | |
} | |
struct ggml_tensor * tmp = ggml_mul_mat(ctx0, | |
model.layers[il].w3, | |
cur); | |
offload_func(tmp); | |
ggml_set_name(tmp, "result_w3"); | |
cur = ggml_mul_mat(ctx0, | |
model.layers[il].w1, | |
cur); | |
offload_func(cur); | |
ggml_set_name(cur, "result_w1"); | |
// SILU activation | |
cur = ggml_silu(ctx0, cur); | |
offload_func(cur); | |
ggml_set_name(cur, "silu"); | |
cur = ggml_mul(ctx0, cur, tmp); | |
offload_func(cur); | |
ggml_set_name(cur, "silu_x_result_w3"); | |
cur = ggml_mul_mat(ctx0, | |
model.layers[il].w2, | |
cur); | |
offload_func(cur); | |
ggml_set_name(cur, "result_w2"); | |
} | |
cur = ggml_add(ctx0, cur, inpFF); | |
offload_func(cur); | |
ggml_set_name(cur, "inpFF_+_result_w2"); | |
// input for next layer | |
inpL = cur; | |
} | |
lctx.use_buf(ctx0, 0); | |
// used at the end to optionally extract the embeddings | |
struct ggml_tensor * embeddings = NULL; | |
// norm | |
{ | |
cur = ggml_rms_norm(ctx0, inpL); | |
offload_func_nr(cur); | |
ggml_set_name(cur, "rms_norm_2"); | |
// cur = cur*norm(broadcasted) | |
cur = ggml_mul(ctx0, cur, model.norm); | |
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend | |
ggml_set_name(cur, "result_norm"); | |
embeddings = cur; | |
} | |
// lm_head | |
cur = ggml_mul_mat(ctx0, model.output, cur); | |
ggml_set_name(cur, "result_output"); | |
lctx.use_buf(ctx0, -1); | |
// logits -> probs | |
//cur = ggml_soft_max_inplace(ctx0, cur); | |
// run the computation | |
ggml_build_forward_expand(&gf, cur); | |
if (lctx.ctx_metal && N == 1) { | |
ggml_metal_graph_compute(lctx.ctx_metal, &gf); | |
ggml_metal_get_tensor (lctx.ctx_metal, cur); | |
} else { | |
// IMPORTANT: | |
// Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla | |
// ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX | |
// coprocessor. | |
// | |
// When we implement Matrix x Matrix Metal multiplication, we can avoid this branch. | |
// But for now, we have focused only on Matrix x Vector Metal multiplication. | |
// | |
// TODO: avoid these syncs via shared memory (ref #1696) | |
// | |
if (lctx.ctx_metal) { | |
// We need to sync the GPU KV cache with the CPU KV cache | |
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k); | |
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v); | |
} | |
ggml_graph_compute(ctx0, &gf); | |
} | |
ggml_graph_compute(ctx0, &gf); | |
if (cgraph_fname) { | |
ggml_graph_export(&gf, cgraph_fname); | |
} | |
// print timing information per ggml operation (for debugging purposes) | |
// requires GGML_PERF to be defined | |
ggml_graph_print(&gf); | |
// plot the computation graph in dot format (for debugging purposes) | |
//if (n_past%100 == 0) { | |
// ggml_graph_dump_dot(&gf, NULL, "llama.dot"); | |
//} | |
//embd_w.resize(n_vocab*N); | |
//memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N); | |
// update kv token count | |
lctx.kv_self.n = n_past + N; | |
// extract logits | |
{ | |
auto & logits_out = lctx.logits; | |
if (lctx.logits_all) { | |
logits_out.resize(n_vocab * N); | |
memcpy(logits_out.data(), (float *) ggml_get_data(cur), sizeof(float)*n_vocab*N); | |
} else { | |
// return result for just the last token | |
logits_out.resize(n_vocab); | |
memcpy(logits_out.data(), (float *) ggml_get_data(cur) + (n_vocab*(N-1)), sizeof(float)*n_vocab); | |
} | |
} | |
// extract embeddings | |
if (!lctx.embedding.empty()) { | |
auto & embedding_out = lctx.embedding; | |
embedding_out.resize(n_embd); | |
memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd); | |
} | |
if (mem_per_token == 0) { | |
mem_per_token = ggml_used_mem(ctx0)/N; | |
} | |
printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__, | |
ggml_used_mem(ctx0)/1024.0/1024.0, | |
lctx.get_buf_max_mem(0)/1024.0/1024.0, | |
lctx.get_buf_max_mem(1)/1024.0/1024.0); | |
ggml_free(ctx0); | |
// measure the performance only for the single-token evals | |
if (N == 1) { | |
lctx.t_eval_us += ggml_time_us() - t_start_us; | |
lctx.n_eval++; | |
} | |
else if (N > 1) { | |
lctx.t_p_eval_us += ggml_time_us() - t_start_us; | |
lctx.n_p_eval += N; | |
} | |
return true; | |
} | |
// | |
// tokenizer | |
// | |
static size_t utf8_len(char src) { | |
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; | |
uint8_t highbits = static_cast<uint8_t>(src) >> 4; | |
return lookup[highbits]; | |
} | |
struct llama_sp_symbol { | |
using index = int; | |
index prev; | |
index next; | |
const char * text; | |
size_t n; | |
}; | |
static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable"); | |
struct llama_sp_bigram { | |
struct comparator { | |
bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) { | |
return (l.score < r.score) || (l.score == r.score && l.left > r.left); | |
} | |
}; | |
using queue_storage = std::vector<llama_sp_bigram>; | |
using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>; | |
llama_sp_symbol::index left; | |
llama_sp_symbol::index right; | |
float score; | |
size_t size; | |
}; | |
// original implementation: | |
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 | |
struct llama_tokenizer { | |
llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {} | |
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) { | |
// split string into utf8 chars | |
int index = 0; | |
size_t offs = 0; | |
while (offs < text.size()) { | |
llama_sp_symbol sym; | |
size_t char_len = std::min(text.size() - offs, utf8_len(text[offs])); | |
sym.text = text.c_str() + offs; | |
sym.n = char_len; | |
offs += char_len; | |
sym.prev = index - 1; | |
sym.next = offs == text.size() ? -1 : index + 1; | |
index++; | |
symbols_.emplace_back(sym); | |
} | |
// seed the work queue with all possible 2-character tokens. | |
for (size_t i = 1; i < symbols_.size(); ++i) { | |
try_add_bigram(i - 1, i); | |
} | |
// keep substituting the highest frequency pairs for as long as we can. | |
while (!work_queue_.empty()) { | |
auto bigram = work_queue_.top(); | |
work_queue_.pop(); | |
auto & left_sym = symbols_[bigram.left]; | |
auto & right_sym = symbols_[bigram.right]; | |
// if one of the symbols already got merged, skip it. | |
if (left_sym.n == 0 || right_sym.n == 0 || | |
left_sym.n + right_sym.n != bigram.size) { | |
continue; | |
} | |
// merge the right sym into the left one | |
left_sym.n += right_sym.n; | |
right_sym.n = 0; | |
//printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); | |
// remove the right sym from the chain | |
left_sym.next = right_sym.next; | |
if (right_sym.next >= 0) { | |
symbols_[right_sym.next].prev = bigram.left; | |
} | |
// find more substitutions | |
try_add_bigram(left_sym.prev, bigram.left); | |
try_add_bigram(bigram.left, left_sym.next); | |
} | |
for (int i = 0; i != -1; i = symbols_[i].next) { | |
auto & symbol = symbols_[i]; | |
auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n)); | |
if (token == vocab_.token_to_id.end()) { | |
// output any symbols that did not form tokens as bytes. | |
for (int j = 0; j < (int) symbol.n; ++j) { | |
llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3; | |
output.push_back(token_id); | |
} | |
} else { | |
output.push_back((*token).second); | |
} | |
} | |
} | |
private: | |
void try_add_bigram(int left, int right) { | |
if (left == -1 || right == -1) { | |
return; | |
} | |
const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n); | |
auto token = vocab_.token_to_id.find(text); | |
if (token == vocab_.token_to_id.end()) { | |
return; | |
} | |
if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) { | |
return; | |
} | |
const auto &tok_score = vocab_.id_to_token[(*token).second]; | |
llama_sp_bigram bigram; | |
bigram.left = left; | |
bigram.right = right; | |
bigram.score = tok_score.score; | |
bigram.size = text.size(); | |
work_queue_.push(bigram); | |
} | |
const llama_vocab & vocab_; | |
std::vector<llama_sp_symbol> symbols_; | |
llama_sp_bigram::queue work_queue_; | |
}; | |
static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) { | |
llama_tokenizer tokenizer(vocab); | |
std::vector<llama_vocab::id> output; | |
if (text.empty()) { | |
return output; | |
} | |
if (bos) { | |
output.push_back(llama_token_bos()); | |
} | |
tokenizer.tokenize(text, output); | |
return output; | |
} | |
// | |
// sampling | |
// | |
void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { | |
assert(candidates->size > 0); | |
const int64_t t_start_sample_us = ggml_time_us(); | |
// Sort the logits in descending order | |
if (!candidates->sorted) { | |
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { | |
return a.logit > b.logit; | |
}); | |
candidates->sorted = true; | |
} | |
float max_l = candidates->data[0].logit; | |
float cum_sum = 0.0f; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
float p = expf(candidates->data[i].logit - max_l); | |
candidates->data[i].p = p; | |
cum_sum += p; | |
} | |
for (size_t i = 0; i < candidates->size; ++i) { | |
candidates->data[i].p /= cum_sum; | |
} | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) { | |
const int64_t t_start_sample_us = ggml_time_us(); | |
k = std::max(k, (int) min_keep); | |
k = std::min(k, (int) candidates->size); | |
// Sort scores in descending order | |
if (!candidates->sorted) { | |
auto comp = [](const llama_token_data & a, const llama_token_data & b) { | |
return a.logit > b.logit; | |
}; | |
if (k == (int) candidates->size) { | |
std::sort(candidates->data, candidates->data + candidates->size, comp); | |
} else { | |
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); | |
} | |
candidates->sorted = true; | |
} | |
candidates->size = k; | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { | |
if (p >= 1.0f) { | |
return; | |
} | |
const int64_t t_start_sample_us = ggml_time_us(); | |
llama_sample_softmax(ctx, candidates); | |
// Compute the cumulative probabilities | |
float cum_sum = 0.0f; | |
size_t last_idx = candidates->size; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
cum_sum += candidates->data[i].p; | |
// Check if the running sum is at least p or if we have kept at least min_keep tokens | |
// we set the last index to i+1 to indicate that the current iterate should be included in the set | |
if (cum_sum >= p && i + 1 >= min_keep) { | |
last_idx = i + 1; | |
break; | |
} | |
} | |
// Resize the output vector to keep only the top-p tokens | |
candidates->size = last_idx; | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) { | |
if (z >= 1.0f || candidates->size <= 2) { | |
return; | |
} | |
const int64_t t_start_sample_us = ggml_time_us(); | |
llama_sample_softmax(nullptr, candidates); | |
// Compute the first and second derivatives | |
std::vector<float> first_derivatives(candidates->size - 1); | |
std::vector<float> second_derivatives(candidates->size - 2); | |
for (size_t i = 0; i < first_derivatives.size(); ++i) { | |
first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; | |
} | |
for (size_t i = 0; i < second_derivatives.size(); ++i) { | |
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; | |
} | |
// Calculate absolute value of second derivatives | |
for (size_t i = 0; i < second_derivatives.size(); ++i) { | |
second_derivatives[i] = abs(second_derivatives[i]); | |
} | |
// Normalize the second derivatives | |
float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); | |
for (float & value : second_derivatives) { | |
value /= second_derivatives_sum; | |
} | |
float cum_sum = 0.0f; | |
size_t last_idx = candidates->size; | |
for (size_t i = 0; i < second_derivatives.size(); ++i) { | |
cum_sum += second_derivatives[i]; | |
// Check if the running sum is greater than z or if we have kept at least min_keep tokens | |
if (cum_sum > z && i >= min_keep) { | |
last_idx = i; | |
break; | |
} | |
} | |
// Resize the output vector to keep only the tokens above the tail location | |
candidates->size = last_idx; | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { | |
// Reference implementation: | |
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr | |
if (p >= 1.0f) { | |
return; | |
} | |
const int64_t t_start_sample_us = ggml_time_us(); | |
// Compute the softmax of logits and calculate entropy | |
llama_sample_softmax(nullptr, candidates); | |
float entropy = 0.0f; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
entropy += -candidates->data[i].p * logf(candidates->data[i].p); | |
} | |
// Compute the absolute difference between negative log probability and entropy for each candidate | |
std::vector<float> shifted_scores; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); | |
shifted_scores.push_back(shifted_score); | |
} | |
// Sort tokens based on the shifted_scores and their corresponding indices | |
std::vector<size_t> indices(candidates->size); | |
std::iota(indices.begin(), indices.end(), 0); | |
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { | |
return shifted_scores[a] < shifted_scores[b]; | |
}); | |
// Compute the cumulative probabilities | |
float cum_sum = 0.0f; | |
size_t last_idx = indices.size(); | |
for (size_t i = 0; i < indices.size(); ++i) { | |
size_t idx = indices[i]; | |
cum_sum += candidates->data[idx].p; | |
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens | |
if (cum_sum > p && i >= min_keep - 1) { | |
last_idx = i + 1; | |
break; | |
} | |
} | |
// Resize the output vector to keep only the locally typical tokens | |
std::vector<llama_token_data> new_candidates; | |
for (size_t i = 0; i < last_idx; ++i) { | |
size_t idx = indices[i]; | |
new_candidates.push_back(candidates->data[idx]); | |
} | |
// Replace the data in candidates with the new_candidates data | |
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); | |
candidates->size = new_candidates.size(); | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { | |
const int64_t t_start_sample_us = ggml_time_us(); | |
for (size_t i = 0; i < candidates_p->size; ++i) { | |
candidates_p->data[i].logit /= temp; | |
} | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) { | |
if (last_tokens_size == 0 || penalty == 1.0f) { | |
return; | |
} | |
const int64_t t_start_sample_us = ggml_time_us(); | |
for (size_t i = 0; i < candidates->size; ++i) { | |
const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id); | |
if (token_iter == last_tokens + last_tokens_size) { | |
continue; | |
} | |
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. | |
// This is common fix for this problem, which is to multiply by the penalty instead of dividing. | |
if (candidates->data[i].logit <= 0) { | |
candidates->data[i].logit *= penalty; | |
} else { | |
candidates->data[i].logit /= penalty; | |
} | |
} | |
candidates->sorted = false; | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) { | |
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) { | |
return; | |
} | |
const int64_t t_start_sample_us = ggml_time_us(); | |
// Create a frequency map to count occurrences of each token in last_tokens | |
std::unordered_map<llama_token, int> token_count; | |
for (size_t i = 0; i < last_tokens_size; ++i) { | |
token_count[last_tokens_p[i]]++; | |
} | |
// Apply frequency and presence penalties to the candidates | |
for (size_t i = 0; i < candidates->size; ++i) { | |
auto token_iter = token_count.find(candidates->data[i].id); | |
if (token_iter == token_count.end()) { | |
continue; | |
} | |
int count = token_iter->second; | |
candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence; | |
} | |
candidates->sorted = false; | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
} | |
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) { | |
assert(ctx); | |
auto N = float(llama_n_vocab(ctx)); | |
int64_t t_start_sample_us; | |
t_start_sample_us = ggml_time_us(); | |
llama_sample_softmax(nullptr, candidates); | |
// Estimate s_hat using the most probable m tokens | |
float s_hat = 0.0; | |
float sum_ti_bi = 0.0; | |
float sum_ti_sq = 0.0; | |
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { | |
float t_i = logf(float(i + 2) / float(i + 1)); | |
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); | |
sum_ti_bi += t_i * b_i; | |
sum_ti_sq += t_i * t_i; | |
} | |
s_hat = sum_ti_bi / sum_ti_sq; | |
// Compute k from the estimated s_hat and target surprise value | |
float epsilon_hat = s_hat - 1; | |
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); | |
// Sample the next word X using top-k sampling | |
llama_sample_top_k(nullptr, candidates, int(k), 1); | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
llama_token X = llama_sample_token(ctx, candidates); | |
t_start_sample_us = ggml_time_us(); | |
// Compute error as the difference between observed surprise and target surprise value | |
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { | |
return candidate.id == X; | |
})); | |
float observed_surprise = -log2f(candidates->data[X_idx].p); | |
float e = observed_surprise - tau; | |
// Update mu using the learning rate and error | |
*mu = *mu - eta * e; | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
ctx->n_sample++; | |
} | |
return X; | |
} | |
llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { | |
assert(ctx); | |
int64_t t_start_sample_us; | |
t_start_sample_us = ggml_time_us(); | |
llama_sample_softmax(ctx, candidates); | |
// Truncate the words with surprise values greater than mu | |
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { | |
return -log2f(candidate.p) > *mu; | |
})); | |
if (candidates->size == 0) { | |
candidates->size = 1; | |
} | |
// Normalize the probabilities of the remaining words | |
llama_sample_softmax(ctx, candidates); | |
// Sample the next word X from the remaining words | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
llama_token X = llama_sample_token(ctx, candidates); | |
t_start_sample_us = ggml_time_us(); | |
// Compute error as the difference between observed surprise and target surprise value | |
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { | |
return candidate.id == X; | |
})); | |
float observed_surprise = -log2f(candidates->data[X_idx].p); | |
float e = observed_surprise - tau; | |
// Update mu using the learning rate and error | |
*mu = *mu - eta * e; | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
} | |
return X; | |
} | |
llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) { | |
const int64_t t_start_sample_us = ggml_time_us(); | |
// Find max element | |
auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { | |
return a.logit < b.logit; | |
}); | |
llama_token result = max_iter->id; | |
if (ctx) { | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
ctx->n_sample++; | |
} | |
return result; | |
} | |
llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { | |
assert(ctx); | |
const int64_t t_start_sample_us = ggml_time_us(); | |
llama_sample_softmax(nullptr, candidates); | |
std::vector<float> probs; | |
probs.reserve(candidates->size); | |
for (size_t i = 0; i < candidates->size; ++i) { | |
probs.push_back(candidates->data[i].p); | |
} | |
std::discrete_distribution<> dist(probs.begin(), probs.end()); | |
auto & rng = ctx->rng; | |
int idx = dist(rng); | |
llama_token result = candidates->data[idx].id; | |
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
ctx->n_sample++; | |
return result; | |
} | |
// | |
// quantization | |
// | |
static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) { | |
if (output.size < nelements * sizeof(float)) { | |
output.resize(nelements * sizeof(float)); | |
} | |
float * f32_output = (float *) output.addr; | |
quantize_fns_t qtype; | |
if (ggml_is_quantized(tensor.type)) { | |
qtype = ggml_internal_get_quantize_fn(tensor.type); | |
if (qtype.dequantize_row_q == NULL) { | |
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type))); | |
} | |
} else if (tensor.type != GGML_TYPE_F16) { | |
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type))); | |
} | |
if (nthread < 2) { | |
if (tensor.type == GGML_TYPE_F16) { | |
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements); | |
} else if (ggml_is_quantized(tensor.type)) { | |
qtype.dequantize_row_q(tensor.data, f32_output, nelements); | |
} else { | |
LLAMA_ASSERT(false); // unreachable | |
} | |
return; | |
} | |
auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type); | |
auto block_size_bytes = ggml_type_size(tensor.type); | |
LLAMA_ASSERT(nelements % block_size == 0); | |
auto nblocks = nelements / block_size; | |
auto blocks_per_thread = nblocks / nthread; | |
auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count | |
std::vector<std::thread> workers; | |
for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) { | |
auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread | |
auto thr_elems = thr_blocks * block_size; // number of elements for this thread | |
auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread | |
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { | |
if (typ == GGML_TYPE_F16) { | |
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); | |
} else { | |
qtype.dequantize_row_q(inbuf, outbuf, nels); | |
} | |
}; | |
workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems)); | |
in_buff_offs += thr_block_bytes; | |
out_buff_offs += thr_elems; | |
} | |
for (auto & worker : workers) { | |
worker.join(); | |
} | |
} | |
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { | |
ggml_type quantized_type; | |
llama_ftype ftype = params->ftype; | |
int nthread = params->nthread; | |
switch (params->ftype) { | |
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break; | |
case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break; | |
case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break; | |
case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break; | |
case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break; | |
case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break; | |
case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break; | |
// K-quants | |
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; | |
case LLAMA_FTYPE_MOSTLY_Q3_K_S: | |
case LLAMA_FTYPE_MOSTLY_Q3_K_M: | |
case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; | |
case LLAMA_FTYPE_MOSTLY_Q4_K_S: | |
case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break; | |
case LLAMA_FTYPE_MOSTLY_Q5_K_S: | |
case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break; | |
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; | |
default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); | |
} | |
if (nthread <= 0) { | |
nthread = std::thread::hardware_concurrency(); | |
} | |
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false, | |
/*vocab_only*/ false)); | |
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype); | |
int n_attention_wv = 0; | |
int n_feed_forward_w2 = 0; | |
for (auto& tensor : model_loader->tensors_map.tensors) { | |
if (tensor.name.find("attention.wv.weight") != std::string::npos) { | |
++n_attention_wv; | |
} | |
else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { | |
++n_feed_forward_w2; | |
} | |
} | |
int i_attention_wv = 0; | |
int i_feed_forward_w2 = 0; | |
size_t total_size_org = 0; | |
size_t total_size_new = 0; | |
std::vector<int64_t> hist_all(1 << 4, 0); | |
std::vector<std::thread> workers; | |
std::mutex mutex; | |
size_t idx = 0; | |
for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) { | |
llama_buffer read_data; | |
read_data.resize(tensor.size); | |
tensor.data = read_data.addr; | |
model_loader->load_data_for(tensor); | |
printf("[%4zu/%4zu] %36s - %16s, type = %6s, ", | |
++idx, model_loader->tensors_map.tensors.size(), | |
tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(), | |
ggml_type_name(tensor.type)); | |
// This used to be a regex, but <regex> has an extreme cost to compile times. | |
bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'? | |
// quantize only 2D tensors | |
quantize &= (tensor.ne.size() == 2); | |
quantize &= params->quantize_output_tensor || tensor.name != "output.weight"; | |
quantize &= quantized_type != tensor.type; | |
enum ggml_type new_type; | |
void * new_data; | |
size_t new_size; | |
llama_buffer work; | |
if (!quantize) { | |
new_type = tensor.type; | |
new_data = tensor.data; | |
new_size = tensor.size; | |
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0); | |
} else { | |
new_type = quantized_type; | |
if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K || | |
quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) { | |
int nx = tensor.ne.at(0); | |
int ny = tensor.ne.at(1); | |
if (nx % QK_K != 0 || ny % QK_K != 0) { | |
fprintf(stderr, "\n\n========================= Tensor sizes %d x %d are not divisible by %d\n",nx,ny,QK_K); | |
fprintf(stderr, "This is required to be able to use k-quants for now!\n"); | |
fprintf(stderr, "========================================================================================\n\n"); | |
throw std::runtime_error("Unsupported tensor size encountered\n"); | |
} | |
} | |
if (tensor.name == "output.weight") { | |
int nx = tensor.ne.at(0); | |
int ny = tensor.ne.at(1); | |
if (nx % QK_K == 0 && ny % QK_K == 0) { | |
new_type = GGML_TYPE_Q6_K; | |
} | |
} else if (tensor.name.find("attention.wv.weight") != std::string::npos) { | |
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; | |
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && | |
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 || | |
(i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; | |
++i_attention_wv; | |
} else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { | |
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; | |
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && | |
(i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 || | |
(i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; | |
++i_feed_forward_w2; | |
} else if (tensor.name.find("attention.wo.weight") != std::string::npos) { | |
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; | |
} | |
float * f32_data; | |
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1); | |
llama_buffer f32_conv_buf; | |
if (tensor.type == GGML_TYPE_F32) { | |
f32_data = (float *) tensor.data; | |
} else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) { | |
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type))); | |
} else { | |
llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread); | |
f32_data = (float *) f32_conv_buf.addr; | |
} | |
printf("quantizing .. "); | |
fflush(stdout); | |
work.resize(nelements * 4); // upper bound on size | |
new_data = work.addr; | |
std::vector<int64_t> hist_cur(1 << 4, 0); | |
int chunk_size = 32 * 512; | |
const int nchunk = (nelements + chunk_size - 1)/chunk_size; | |
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; | |
if (nthread_use < 2) { | |
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data()); | |
} else { | |
size_t counter = 0; | |
new_size = 0; | |
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () { | |
std::vector<int64_t> local_hist; | |
size_t local_size = 0; | |
while (true) { | |
std::unique_lock<std::mutex> lock(mutex); | |
size_t first = counter; counter += chunk_size; | |
if (first >= nelements) { | |
if (!local_hist.empty()) { | |
for (int j=0; j<int(local_hist.size()); ++j) { | |
hist_cur[j] += local_hist[j]; | |
} | |
new_size += local_size; | |
} | |
break; | |
} | |
lock.unlock(); | |
size_t last = std::min(nelements, first + chunk_size); | |
if (local_hist.empty()) { | |
local_hist.resize(hist_cur.size(), 0); | |
} | |
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data()); | |
} | |
}; | |
if ((int) workers.size() < nthread_use - 1) { | |
workers.resize(nthread_use - 1); | |
} | |
for (int it = 0; it < nthread_use - 1; ++it) { | |
workers[it] = std::thread(compute); | |
} | |
compute(); | |
for (int it = 0; it < nthread_use - 1; ++it) { | |
workers[it].join(); | |
} | |
} | |
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); | |
int64_t tot_count = 0; | |
for (size_t i = 0; i < hist_cur.size(); i++) { | |
hist_all[i] += hist_cur[i]; | |
tot_count += hist_cur[i]; | |
} | |
if (tot_count > 0) { | |
for (size_t i = 0; i < hist_cur.size(); i++) { | |
printf("%5.3f ", hist_cur[i] / float(nelements)); | |
} | |
} | |
printf("\n"); | |
} | |
total_size_org += tensor.size; | |
total_size_new += new_size; | |
file_saver.write_tensor(tensor, new_type, new_data, new_size); | |
} | |
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); | |
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); | |
{ | |
int64_t sum_all = 0; | |
for (size_t i = 0; i < hist_all.size(); i++) { | |
sum_all += hist_all[i]; | |
} | |
if (sum_all > 0) { | |
printf("%s: hist: ", __func__); | |
for (size_t i = 0; i < hist_all.size(); i++) { | |
printf("%5.3f ", hist_all[i] / float(sum_all)); | |
} | |
printf("\n"); | |
} | |
} | |
} | |
// | |
// interface implementation | |
// | |
struct llama_model * llama_load_model_from_file( | |
const char * path_model, | |
struct llama_context_params params) { | |
ggml_time_init(); | |
llama_model * model = new llama_model; | |
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; | |
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers, | |
params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock, | |
params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { | |
delete model; | |
fprintf(stderr, "%s: failed to load model\n", __func__); | |
return nullptr; | |
} | |
return model; | |
} | |
void llama_free_model(struct llama_model * model) { | |
delete model; | |
} | |
struct llama_context * llama_new_context_with_model( | |
struct llama_model * model, | |
struct llama_context_params params) { | |
if (!model) { | |
return nullptr; | |
} | |
llama_context * ctx = new llama_context(*model, model->vocab); | |
if (params.seed < 0) { | |
params.seed = time(NULL); | |
} | |
unsigned cur_percentage = 0; | |
if (params.progress_callback == NULL) { | |
params.progress_callback_user_data = &cur_percentage; | |
params.progress_callback = [](float progress, void * ctx) { | |
unsigned * cur_percentage_p = (unsigned *) ctx; | |
unsigned percentage = (unsigned) (100 * progress); | |
while (percentage > *cur_percentage_p) { | |
*cur_percentage_p = percentage; | |
fprintf(stderr, "."); | |
fflush(stderr); | |
if (percentage >= 100) { | |
fprintf(stderr, "\n"); | |
} | |
} | |
}; | |
} | |
ctx->rng = std::mt19937(params.seed); | |
ctx->logits_all = params.logits_all; | |
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; | |
// reserve memory for context buffers | |
if (!params.vocab_only) { | |
if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) { | |
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); | |
llama_free(ctx); | |
return nullptr; | |
} | |
{ | |
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v); | |
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); | |
} | |
const auto & hparams = ctx->model.hparams; | |
// resized during inference | |
if (params.logits_all) { | |
ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); | |
} else { | |
ctx->logits.reserve(hparams.n_vocab); | |
} | |
if (params.embedding){ | |
ctx->embedding.resize(hparams.n_embd); | |
} | |
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type)); | |
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type)); | |
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type)); | |
} | |
if (params.n_gpu_layers > 0) { | |
// this allocates all Metal resources and memory buffers | |
ctx->ctx_metal = ggml_metal_init(); | |
void * data_ptr = NULL; | |
size_t data_size = 0; | |
if (params.use_mmap) { | |
data_ptr = ctx->model.mapping->addr; | |
data_size = ctx->model.mapping->size; | |
} else { | |
data_ptr = ggml_get_mem_buffer(ctx->model.ctx); | |
data_size = ggml_get_mem_size (ctx->model.ctx); | |
} | |
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx); | |
printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0); | |
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); | |
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0)); | |
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0)); | |
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0)); | |
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0)); | |
} | |
return ctx; | |
} | |
struct llama_context * llama_init_from_file( | |
const char * path_model, | |
struct llama_context_params params) { | |
struct llama_model * model = llama_load_model_from_file(path_model, params); | |
if (!model) { | |
return nullptr; | |
} | |
struct llama_context * ctx = llama_new_context_with_model(model, params); | |
ctx->model_owner = true; | |
return ctx; | |
} | |
void llama_free(struct llama_context * ctx) { | |
if (ctx->model_owner) { | |
delete &ctx->model; | |
} | |
delete ctx; | |
} | |
int llama_model_quantize( | |
const char * fname_inp, | |
const char * fname_out, | |
const llama_model_quantize_params *params) { | |
try { | |
llama_model_quantize_internal(fname_inp, fname_out, params); | |
return 0; | |
} catch (const std::exception & err) { | |
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what()); | |
return 1; | |
} | |
} | |
int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) { | |
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); | |
const int64_t t_start_lora_us = ggml_time_us(); | |
auto fin = std::ifstream(path_lora, std::ios::binary); | |
if (!fin) { | |
fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora); | |
return 1; | |
} | |
// verify magic and version | |
{ | |
uint32_t magic; | |
fin.read((char *) &magic, sizeof(magic)); | |
if (magic != LLAMA_FILE_MAGIC_GGLA) { | |
fprintf(stderr, "%s: bad file magic\n", __func__); | |
return 1; | |
} | |
uint32_t format_version; | |
fin.read((char *) &format_version, sizeof(format_version)); | |
if (format_version != 1) { | |
fprintf(stderr, "%s: unsupported file version\n", __func__ ); | |
return 1; | |
} | |
} | |
int32_t lora_r; | |
int32_t lora_alpha; | |
fin.read((char *) &lora_r, sizeof(lora_r)); | |
fin.read((char *) &lora_alpha, sizeof(lora_alpha)); | |
float scaling = (float)lora_alpha / (float)lora_r; | |
fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); | |
// create a temporary ggml context to store the lora tensors | |
// todo: calculate size from biggest possible tensor | |
std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull); | |
struct ggml_init_params params; | |
params.mem_size = lora_buf.size(); | |
params.mem_buffer = lora_buf.data(); | |
params.no_alloc = false; | |
ggml_context * lora_ctx = ggml_init(params); | |
std::unordered_map<std::string, struct ggml_tensor *> lora_tensors; | |
// create a name -> tensor map of the model to accelerate lookups | |
std::unordered_map<std::string, struct ggml_tensor*> model_tensors; | |
for (auto & kv: model.tensors_by_name) { | |
model_tensors.insert(kv); | |
} | |
// load base model | |
std::unique_ptr<llama_model_loader> model_loader; | |
ggml_context * base_ctx = NULL; | |
llama_buffer base_buf; | |
if (path_base_model) { | |
fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model); | |
model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false)); | |
size_t ctx_size; | |
size_t mmapped_size; | |
model_loader->calc_sizes(&ctx_size, &mmapped_size); | |
base_buf.resize(ctx_size); | |
ggml_init_params base_params; | |
base_params.mem_size = base_buf.size; | |
base_params.mem_buffer = base_buf.addr; | |
base_params.no_alloc = model_loader->use_mmap; | |
base_ctx = ggml_init(base_params); | |
model_loader->ggml_ctx = base_ctx; | |
// maybe this should in llama_model_loader | |
if (model_loader->use_mmap) { | |
model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0)); | |
} | |
} | |
// read tensors and apply | |
bool warned = false; | |
int n_tensors = 0; | |
while (true) { | |
int32_t n_dims; | |
int32_t length; | |
int32_t ftype; | |
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); | |
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); | |
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype)); | |
if (fin.eof()) { | |
break; | |
} | |
int32_t ne[2] = { 1, 1 }; | |
for (int i = 0; i < n_dims; ++i) { | |
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); | |
} | |
std::string name; | |
{ | |
char buf[1024]; | |
fin.read(buf, length); | |
name = std::string(buf, length); | |
} | |
// check for lora suffix and get the type of tensor | |
const std::string lora_suffix = ".lora"; | |
size_t pos = name.rfind(lora_suffix); | |
if (pos == std::string::npos) { | |
fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); | |
return 1; | |
} | |
std::string lora_type = name.substr(pos + lora_suffix.length()); | |
std::string base_name = name; | |
base_name.erase(pos); | |
// fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str()); | |
if (model_tensors.find(base_name) == model_tensors.end()) { | |
fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); | |
return 1; | |
} | |
// create ggml tensor | |
ggml_type wtype; | |
switch (ftype) { | |
case 0: wtype = GGML_TYPE_F32; break; | |
case 1: wtype = GGML_TYPE_F16; break; | |
default: | |
{ | |
fprintf(stderr, "%s: invalid tensor data type '%d'\n", | |
__func__, ftype); | |
return false; | |
} | |
} | |
ggml_tensor* lora_tensor; | |
if (n_dims == 2) { | |
lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]); | |
} | |
else { | |
fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims); | |
return 1; | |
} | |
// load tensor data | |
size_t offset = fin.tellg(); | |
size_t tensor_data_size = ggml_nbytes(lora_tensor); | |
offset = (offset + 31) & -32; | |
fin.seekg(offset); | |
fin.read((char*)lora_tensor->data, tensor_data_size); | |
lora_tensors[name] = lora_tensor; | |
// check if we have both A and B tensors and apply | |
if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() && | |
lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) { | |
ggml_tensor * dest_t = model_tensors[base_name]; | |
ggml_tensor * base_t; | |
if (model_loader) { | |
// load from base model | |
if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) { | |
fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); | |
return 1; | |
} | |
size_t idx = model_loader->tensors_map.name_to_idx[base_name]; | |
llama_load_tensor & lt = model_loader->tensors_map.tensors[idx]; | |
base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU); | |
lt.data = (uint8_t *) lt.ggml_tensor->data; | |
model_loader->load_data_for(lt); | |
lt.ggml_tensor->data = lt.data; | |
} | |
else { | |
base_t = dest_t; | |
} | |
if (ggml_is_quantized(base_t->type)) { | |
if (!warned) { | |
fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, " | |
"use a f16 or f32 base model with --lora-base\n", __func__); | |
warned = true; | |
} | |
} | |
ggml_tensor * loraA = lora_tensors[base_name + ".loraA"]; | |
ggml_tensor * loraB = lora_tensors[base_name + ".loraB"]; | |
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { | |
fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" | |
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); | |
return 1; | |
} | |
// w = w + BA*s | |
ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB); | |
if (scaling != 1.0f) { | |
ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling); | |
BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor); | |
} | |
ggml_tensor * r; | |
if (base_t == dest_t) { | |
r = ggml_add_inplace(lora_ctx, dest_t, BA); | |
} | |
else { | |
r = ggml_add(lora_ctx, base_t, BA); | |
r = ggml_cpy(lora_ctx, r, dest_t); | |
} | |
struct ggml_cgraph gf = ggml_build_forward(r); | |
gf.n_threads = n_threads; | |
ggml_graph_compute(lora_ctx, &gf); | |
// we won't need these tensors again, reset the context to save memory | |
ggml_free(lora_ctx); | |
lora_ctx = ggml_init(params); | |
lora_tensors.clear(); | |
n_tensors++; | |
if (n_tensors % 4 == 0) { | |
fprintf(stderr, "."); | |
} | |
} | |
} | |
// TODO: this should be in a destructor, it will leak on failure | |
ggml_free(lora_ctx); | |
if (base_ctx) { | |
ggml_free(base_ctx); | |
} | |
const int64_t t_lora_us = ggml_time_us() - t_start_lora_us; | |
fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0); | |
return 0; | |
} | |
int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { | |
try { | |
return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads); | |
} catch (const std::exception & err) { | |
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); | |
return 1; | |
} | |
} | |
int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) { | |
try { | |
return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads); | |
} catch (const std::exception & err) { | |
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); | |
return 1; | |
} | |
} | |
int llama_get_kv_cache_token_count(const struct llama_context * ctx) { | |
return ctx->kv_self.n; | |
} | |
void llama_set_rng_seed(struct llama_context * ctx, int seed) { | |
if (seed < 0) { | |
seed = time(NULL); | |
} | |
ctx->rng.seed(seed); | |
} | |
// Returns the *maximum* size of the state | |
size_t llama_get_state_size(const struct llama_context * ctx) { | |
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. | |
// for reference, std::mt19937(1337) serializes to 6701 bytes. | |
const size_t s_rng_size = sizeof(size_t); | |
const size_t s_rng = LLAMA_MAX_RNG_STATE; | |
const size_t s_logits_capacity = sizeof(size_t); | |
const size_t s_logits_size = sizeof(size_t); | |
const size_t s_logits = ctx->logits.capacity() * sizeof(float); | |
const size_t s_embedding_size = sizeof(size_t); | |
const size_t s_embedding = ctx->embedding.size() * sizeof(float); | |
const size_t s_kv_size = sizeof(size_t); | |
const size_t s_kv_ntok = sizeof(int); | |
const size_t s_kv = ctx->kv_self.buf.size; | |
const size_t s_total = ( | |
+ s_rng_size | |
+ s_rng | |
+ s_logits_capacity | |
+ s_logits_size | |
+ s_logits | |
+ s_embedding_size | |
+ s_embedding | |
+ s_kv_size | |
+ s_kv_ntok | |
+ s_kv | |
); | |
return s_total; | |
} | |
// Copies the state to the specified destination address | |
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { | |
uint8_t * out = dst; | |
// copy rng | |
{ | |
std::stringstream rng_ss; | |
rng_ss << ctx->rng; | |
const size_t rng_size = rng_ss.str().size(); | |
char rng_buf[LLAMA_MAX_RNG_STATE]; | |
memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE); | |
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); | |
memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); | |
memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE; | |
} | |
// copy logits | |
{ | |
const size_t logits_cap = ctx->logits.capacity(); | |
const size_t logits_size = ctx->logits.size(); | |
memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap); | |
memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size); | |
if (logits_size) { | |
memcpy(out, ctx->logits.data(), logits_size * sizeof(float)); | |
} | |
out += logits_cap * sizeof(float); | |
} | |
// copy embeddings | |
{ | |
const size_t embedding_size = ctx->embedding.size(); | |
memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size); | |
if (embedding_size) { | |
memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float)); | |
out += embedding_size * sizeof(float); | |
} | |
} | |
// copy kv cache | |
{ | |
const auto & kv_self = ctx->kv_self; | |
const auto & hparams = ctx->model.hparams; | |
const int n_layer = hparams.n_layer; | |
const int n_embd = hparams.n_embd; | |
const int n_ctx = hparams.n_ctx; | |
const size_t kv_size = kv_self.buf.size; | |
const int kv_ntok = llama_get_kv_cache_token_count(ctx); | |
memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); | |
memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); | |
if (kv_size) { | |
const size_t elt_size = ggml_element_size(kv_self.k); | |
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); | |
ggml_cgraph gf{}; | |
gf.n_threads = 1; | |
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); | |
kout3d->data = out; | |
out += ggml_nbytes(kout3d); | |
ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); | |
vout3d->data = out; | |
out += ggml_nbytes(vout3d); | |
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k, | |
n_embd, kv_ntok, n_layer, | |
elt_size*n_embd, elt_size*n_embd*n_ctx, 0); | |
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v, | |
kv_ntok, n_embd, n_layer, | |
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); | |
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d)); | |
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d)); | |
ggml_graph_compute(cpy_ctx, &gf); | |
ggml_free(cpy_ctx); | |
} | |
} | |
const size_t written = out - dst; | |
const size_t max_size = llama_get_state_size(ctx); | |
LLAMA_ASSERT(written <= max_size); | |
return written; | |
} | |
// Sets the state reading from the specified source address | |
size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { | |
uint8_t * inp = src; | |
// set rng | |
{ | |
size_t rng_size; | |
char rng_buf[LLAMA_MAX_RNG_STATE]; | |
memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size); | |
memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE; | |
std::stringstream rng_ss; | |
rng_ss.str(std::string(&rng_buf[0], rng_size)); | |
rng_ss >> ctx->rng; | |
LLAMA_ASSERT(rng_ss.fail() == false); | |
} | |
// set logits | |
{ | |
size_t logits_cap; | |
size_t logits_size; | |
memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap); | |
memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size); | |
LLAMA_ASSERT(ctx->logits.capacity() == logits_cap); | |
if (logits_size) { | |
ctx->logits.resize(logits_size); | |
memcpy(ctx->logits.data(), inp, logits_size * sizeof(float)); | |
} | |
inp += logits_cap * sizeof(float); | |
} | |
// set embeddings | |
{ | |
size_t embedding_size; | |
memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size); | |
LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size); | |
if (embedding_size) { | |
memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float)); | |
inp += embedding_size * sizeof(float); | |
} | |
} | |
// set kv cache | |
{ | |
const auto & kv_self = ctx->kv_self; | |
const auto & hparams = ctx->model.hparams; | |
const int n_layer = hparams.n_layer; | |
const int n_embd = hparams.n_embd; | |
const int n_ctx = hparams.n_ctx; | |
size_t kv_size; | |
int kv_ntok; | |
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); | |
memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok); | |
if (kv_size) { | |
LLAMA_ASSERT(kv_self.buf.size == kv_size); | |
const size_t elt_size = ggml_element_size(kv_self.k); | |
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); | |
ggml_cgraph gf{}; | |
gf.n_threads = 1; | |
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); | |
kin3d->data = (void *) inp; | |
inp += ggml_nbytes(kin3d); | |
ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); | |
vin3d->data = (void *) inp; | |
inp += ggml_nbytes(vin3d); | |
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k, | |
n_embd, kv_ntok, n_layer, | |
elt_size*n_embd, elt_size*n_embd*n_ctx, 0); | |
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v, | |
kv_ntok, n_embd, n_layer, | |
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); | |
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d)); | |
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d)); | |
ggml_graph_compute(cpy_ctx, &gf); | |
ggml_free(cpy_ctx); | |
} | |
ctx->kv_self.n = kv_ntok; | |
} | |
const size_t nread = inp - src; | |
const size_t max_size = llama_get_state_size(ctx); | |
LLAMA_ASSERT(nread <= max_size); | |
return nread; | |
} | |
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
llama_file file(path_session, "rb"); | |
// sanity checks | |
{ | |
const uint32_t magic = file.read_u32(); | |
const uint32_t version = file.read_u32(); | |
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { | |
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); | |
return false; | |
} | |
llama_hparams session_hparams; | |
file.read_raw(&session_hparams, sizeof(llama_hparams)); | |
if (session_hparams != ctx->model.hparams) { | |
fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__); | |
return false; | |
} | |
} | |
// load the prompt | |
{ | |
const uint32_t n_token_count = file.read_u32(); | |
if (n_token_count > n_token_capacity) { | |
fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); | |
return false; | |
} | |
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); | |
*n_token_count_out = n_token_count; | |
} | |
// restore the context state | |
{ | |
const size_t n_state_size_cur = file.size - file.tell(); | |
const size_t n_state_size_max = llama_get_state_size(ctx); | |
if (n_state_size_cur > n_state_size_max) { | |
fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur); | |
return false; | |
} | |
std::vector<uint8_t> state_data(n_state_size_max); | |
file.read_raw(state_data.data(), n_state_size_cur); | |
llama_set_state_data(ctx, state_data.data()); | |
} | |
return true; | |
} | |
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { | |
llama_file file(path_session, "wb"); | |
file.write_u32(LLAMA_SESSION_MAGIC); | |
file.write_u32(LLAMA_SESSION_VERSION); | |
file.write_raw(&ctx->model.hparams, sizeof(llama_hparams)); | |
// save the prompt | |
file.write_u32((uint32_t) n_token_count); | |
file.write_raw(tokens, sizeof(llama_token) * n_token_count); | |
// save the context state | |
{ | |
const size_t n_state_size_max = llama_get_state_size(ctx); | |
std::vector<uint8_t> state_data(n_state_size_max); | |
const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data()); | |
file.write_raw(state_data.data(), n_state_size_cur); | |
} | |
return true; | |
} | |
int llama_eval( | |
struct llama_context * ctx, | |
const llama_token * tokens, | |
int n_tokens, | |
int n_past, | |
int n_threads) { | |
if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads, nullptr)) { | |
fprintf(stderr, "%s: failed to eval\n", __func__); | |
return 1; | |
} | |
// get a more accurate load time, upon first eval | |
// TODO: fix this | |
if (!ctx->has_evaluated_once) { | |
ctx->t_load_us = ggml_time_us() - ctx->t_start_us; | |
ctx->has_evaluated_once = true; | |
} | |
return 0; | |
} | |
int llama_eval_export(struct llama_context * ctx, const char * fname) { | |
const int n_batch = 1; | |
const int n_ctx = 512 - n_batch; | |
const std::vector<llama_token> tmp(n_batch, llama_token_bos()); | |
if (!llama_eval_internal(*ctx, tmp.data(), tmp.size(), n_ctx, 1, fname)) { | |
fprintf(stderr, "%s: failed to eval\n", __func__); | |
return 1; | |
} | |
return 0; | |
} | |
int llama_tokenize( | |
struct llama_context * ctx, | |
const char * text, | |
llama_token * tokens, | |
int n_max_tokens, | |
bool add_bos) { | |
auto res = llama_tokenize(ctx->vocab, text, add_bos); | |
if (n_max_tokens < (int) res.size()) { | |
fprintf(stderr, "%s: too many tokens\n", __func__); | |
return -((int) res.size()); | |
} | |
for (size_t i = 0; i < res.size(); i++) { | |
tokens[i] = res[i]; | |
} | |
return res.size(); | |
} | |
int llama_n_vocab(const struct llama_context * ctx) { | |
return ctx->vocab.id_to_token.size(); | |
} | |
int llama_n_ctx(const struct llama_context * ctx) { | |
return ctx->model.hparams.n_ctx; | |
} | |
int llama_n_embd(const struct llama_context * ctx) { | |
return ctx->model.hparams.n_embd; | |
} | |
int llama_get_vocab( | |
const struct llama_context * ctx, | |
const char * * strings, | |
float * scores, | |
int capacity) { | |
int n = std::min(capacity, (int) ctx->vocab.id_to_token.size()); | |
for (int i = 0; i<n; ++i) { | |
strings[i] = ctx->vocab.id_to_token[i].tok.c_str(); | |
scores[i] = ctx->vocab.id_to_token[i].score; | |
} | |
return n; | |
} | |
float * llama_get_logits(struct llama_context * ctx) { | |
return ctx->logits.data(); | |
} | |
float * llama_get_embeddings(struct llama_context * ctx) { | |
return ctx->embedding.data(); | |
} | |
const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) { | |
if (token >= llama_n_vocab(ctx)) { | |
return nullptr; | |
} | |
return ctx->vocab.id_to_token[token].tok.c_str(); | |
} | |
llama_token llama_token_bos() { | |
return 1; | |
} | |
llama_token llama_token_eos() { | |
return 2; | |
} | |
llama_token llama_token_nl() { | |
return 13; | |
} | |
void llama_print_timings(struct llama_context * ctx) { | |
const int64_t t_end_us = ggml_time_us(); | |
const int32_t n_sample = std::max(1, ctx->n_sample); | |
const int32_t n_eval = std::max(1, ctx->n_eval); | |
const int32_t n_p_eval = std::max(1, ctx->n_p_eval); | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0); | |
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", | |
__func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample, 1e6 / ctx->t_sample_us * n_sample); | |
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", | |
__func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval, 1e6 / ctx->t_p_eval_us * n_p_eval); | |
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", | |
__func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval, 1e6 / ctx->t_eval_us * n_eval); | |
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0); | |
} | |
void llama_reset_timings(struct llama_context * ctx) { | |
ctx->t_start_us = ggml_time_us(); | |
ctx->t_sample_us = ctx->n_sample = 0; | |
ctx->t_eval_us = ctx->n_eval = 0; | |
ctx->t_p_eval_us = ctx->n_p_eval = 0; | |
} | |
const char * llama_print_system_info(void) { | |
static std::string s; | |
s = ""; | |
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; | |
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; | |
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; | |
s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | "; | |
s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | "; | |
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; | |
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; | |
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; | |
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; | |
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; | |
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; | |
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; | |
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; | |
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; | |
return s.c_str(); | |
} | |
// For internal test use | |
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) { | |
return ctx->model.tensors_by_name; | |
} | |