Spaces:
Build error
Build error
# Convert GPT-J-6B h5 transformer model to ggml format | |
# | |
# Load the model using GPTJForCausalLM. | |
# Iterate over all variables and write them to a binary file. | |
# | |
# For each variable, write the following: | |
# - Number of dimensions (int) | |
# - Name length (int) | |
# - Dimensions (int[n_dims]) | |
# - Name (char[name_length]) | |
# - Data (float[n_dims]) | |
# | |
# By default, the bigger matrices are converted to 16-bit floats. | |
# This can be disabled by adding the "use-f32" CLI argument. | |
# | |
# At the start of the ggml file we write the model parameters | |
# and vocabulary. | |
# | |
import sys | |
import struct | |
import json | |
import torch | |
import numpy as np | |
from transformers import GPTJForCausalLM | |
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a signficant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8+n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
if len(sys.argv) < 3: | |
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") | |
print(" ftype == 0 -> float32") | |
print(" ftype == 1 -> float16") | |
sys.exit(1) | |
# output in the same directory as the model | |
dir_model = sys.argv[1] | |
fname_out = sys.argv[1] + "/ggml-model.bin" | |
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: | |
encoder = json.load(f) | |
with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f: | |
encoder_added = json.load(f) | |
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: | |
hparams = json.load(f) | |
# possible data types | |
# ftype == 0 -> float32 | |
# ftype == 1 -> float16 | |
# | |
# map from ftype to string | |
ftype_str = ["f32", "f16"] | |
ftype = 1 | |
if len(sys.argv) > 2: | |
ftype = int(sys.argv[2]) | |
if ftype < 0 or ftype > 1: | |
print("Invalid ftype: " + str(ftype)) | |
sys.exit(1) | |
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" | |
model = GPTJForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True) | |
#print (model) | |
list_vars = model.state_dict() | |
#print (list_vars) | |
fout = open(fname_out, "wb") | |
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex | |
fout.write(struct.pack("i", hparams["vocab_size"])) | |
fout.write(struct.pack("i", hparams["n_positions"])) | |
fout.write(struct.pack("i", hparams["n_embd"])) | |
fout.write(struct.pack("i", hparams["n_head"])) | |
fout.write(struct.pack("i", hparams["n_layer"])) | |
fout.write(struct.pack("i", hparams["rotary_dim"])) | |
fout.write(struct.pack("i", ftype)) | |
byte_encoder = bytes_to_unicode() | |
byte_decoder = {v:k for k, v in byte_encoder.items()} | |
fout.write(struct.pack("i", len(encoder) + len(encoder_added))) | |
for key in encoder: | |
text = bytearray([byte_decoder[c] for c in key]) | |
fout.write(struct.pack("i", len(text))) | |
fout.write(text) | |
for key in encoder_added: | |
text = bytearray([byte_decoder[c] for c in key]) | |
fout.write(struct.pack("i", len(text))) | |
fout.write(text) | |
for name in list_vars.keys(): | |
data = list_vars[name].squeeze().numpy() | |
print("Processing variable: " + name + " with shape: ", data.shape) | |
# we don't need these | |
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"): | |
print(" Skipping variable: " + name) | |
continue | |
n_dims = len(data.shape); | |
# ftype == 0 -> float32, ftype == 1 -> float16 | |
ftype_cur = 0; | |
if ftype != 0: | |
if name[-7:] == ".weight" and n_dims == 2: | |
print(" Converting to float16") | |
data = data.astype(np.float16) | |
ftype_cur = 1 | |
else: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
else: | |
if data.dtype != np.float32: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
# for efficiency - transpose these matrices: | |
# (note - with latest ggml this is no longer more efficient, so disabling it) | |
# "transformer.h.*.mlp.fc_in.weight" | |
# "transformer.h.*.attn.out_proj.weight" | |
# "transformer.h.*.attn.q_proj.weight" | |
# "transformer.h.*.attn.k_proj.weight" | |
# "transformer.h.*.attn.v_proj.weight" | |
#if name.endswith(".mlp.fc_in.weight") or \ | |
# name.endswith(".attn.out_proj.weight") or \ | |
# name.endswith(".attn.q_proj.weight") or \ | |
# name.endswith(".attn.k_proj.weight") or \ | |
# name.endswith(".attn.v_proj.weight"): | |
# print(" Transposing") | |
# data = data.transpose() | |
# header | |
str = name.encode('utf-8') | |
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) | |
for i in range(n_dims): | |
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) | |
fout.write(str); | |
# data | |
data.tofile(fout) | |
fout.close() | |
print("Done. Output file: " + fname_out) | |
print("") |