Spaces:
Build error
Build error
import sys | |
import struct | |
import json | |
import numpy as np | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
if len(sys.argv) < 3: | |
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") | |
print(" ftype == 0 -> float32") | |
print(" ftype == 1 -> float16") | |
sys.exit(1) | |
# output in the same directory as the model | |
dir_model = sys.argv[1] | |
fname_out = sys.argv[1] + "/ggml-model.bin" | |
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f: | |
encoder = json.load(f) | |
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: | |
hparams = json.load(f) | |
# possible data types | |
# ftype == 0 -> float32 | |
# ftype == 1 -> float16 | |
# | |
# map from ftype to string | |
ftype_str = ["f32", "f16"] | |
ftype = 1 | |
if len(sys.argv) > 2: | |
ftype = int(sys.argv[2]) | |
if ftype < 0 or ftype > 1: | |
print("Invalid ftype: " + str(ftype)) | |
sys.exit(1) | |
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" | |
tokenizer = AutoTokenizer.from_pretrained(dir_model) | |
model = AutoModelForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True) | |
#print (model) | |
#print(tokenizer.encode('I believe the meaning of life is')) | |
list_vars = model.state_dict() | |
for name in list_vars.keys(): | |
print(name, list_vars[name].shape, list_vars[name].dtype) | |
fout = open(fname_out, "wb") | |
print(hparams) | |
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex | |
fout.write(struct.pack("i", hparams["vocab_size"])) | |
fout.write(struct.pack("i", hparams["max_position_embeddings"])) | |
fout.write(struct.pack("i", hparams["hidden_size"])) | |
fout.write(struct.pack("i", hparams["num_attention_heads"])) | |
fout.write(struct.pack("i", hparams["num_hidden_layers"])) | |
fout.write(struct.pack("i", int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))) | |
fout.write(struct.pack("i", hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)) | |
fout.write(struct.pack("i", ftype)) | |
# TODO: temporary hack to not deal with implementing the tokenizer | |
dot_token = tokenizer.encode('.')[0] | |
for i in range(hparams["vocab_size"]): | |
text = tokenizer.decode([dot_token, i]).encode('utf-8') | |
# remove the first byte (it's always '.') | |
text = text[1:] | |
fout.write(struct.pack("i", len(text))) | |
fout.write(text) | |
for name in list_vars.keys(): | |
data = list_vars[name].squeeze().numpy() | |
print("Processing variable: " + name + " with shape: ", data.shape) | |
# we don't need these | |
if name.endswith(".attention.masked_bias") or \ | |
name.endswith(".attention.bias") or \ | |
name.endswith(".attention.rotary_emb.inv_freq"): | |
print(" Skipping variable: " + name) | |
continue | |
n_dims = len(data.shape); | |
# ftype == 0 -> float32, ftype == 1 -> float16 | |
ftype_cur = 0; | |
if ftype != 0: | |
if name[-7:] == ".weight" and n_dims == 2: | |
print(" Converting to float16") | |
data = data.astype(np.float16) | |
ftype_cur = 1 | |
else: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
else: | |
if data.dtype != np.float32: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
# header | |
str = name.encode('utf-8') | |
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) | |
for i in range(n_dims): | |
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) | |
fout.write(str); | |
# data | |
data.tofile(fout) | |
fout.close() | |
print("Done. Output file: " + fname_out) | |
print("") |