Spaces:
Build error
Build error
#!/usr/bin/env python3 | |
import sys | |
import os | |
sys.path.insert(0, os.path.dirname(__file__)) | |
from embd_input import MyModel | |
import numpy as np | |
from torch import nn | |
import torch | |
# use PandaGPT path | |
panda_gpt_path = os.path.join(os.path.dirname(__file__), "PandaGPT") | |
imagebind_ckpt_path = "./models/panda_gpt/" | |
sys.path.insert(0, os.path.join(panda_gpt_path,"code","model")) | |
from ImageBind.models import imagebind_model | |
from ImageBind import data | |
ModalityType = imagebind_model.ModalityType | |
max_tgt_len = 400 | |
class PandaGPT: | |
def __init__(self, args): | |
self.visual_encoder,_ = imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path) | |
self.visual_encoder.eval() | |
self.llama_proj = nn.Linear(1024, 5120) # self.visual_hidden_size, 5120) | |
self.max_tgt_len = max_tgt_len | |
self.model = MyModel(["main", *args]) | |
self.generated_text = "" | |
self.device = "cpu" | |
def load_projection(self, path): | |
state = torch.load(path, map_location="cpu") | |
self.llama_proj.load_state_dict({ | |
"weight": state["llama_proj.weight"], | |
"bias": state["llama_proj.bias"]}) | |
def eval_inputs(self, inputs): | |
self.model.eval_string("<Img>") | |
embds = self.extract_multimoal_feature(inputs) | |
for i in embds: | |
self.model.eval_float(i.T) | |
self.model.eval_string("</Img> ") | |
def chat(self, question): | |
return self.chat_with_image(None, question) | |
def chat_with_image(self, inputs, question): | |
if self.generated_text == "": | |
self.model.eval_string("###") | |
self.model.eval_string(" Human: ") | |
if inputs: | |
self.eval_inputs(inputs) | |
self.model.eval_string(question) | |
self.model.eval_string("\n### Assistant:") | |
ret = self.model.generate_with_print(end="###") | |
self.generated_text += ret | |
return ret | |
def extract_multimoal_feature(self, inputs): | |
features = [] | |
for key in ["image", "audio", "video", "thermal"]: | |
if key + "_paths" in inputs: | |
embeds = self.encode_data(key, inputs[key+"_paths"]) | |
features.append(embeds) | |
return features | |
def encode_data(self, data_type, data_paths): | |
type_map = { | |
"image": ModalityType.VISION, | |
"audio": ModalityType.AUDIO, | |
"video": ModalityType.VISION, | |
"thermal": ModalityType.THERMAL, | |
} | |
load_map = { | |
"image": data.load_and_transform_vision_data, | |
"audio": data.load_and_transform_audio_data, | |
"video": data.load_and_transform_video_data, | |
"thermal": data.load_and_transform_thermal_data | |
} | |
load_function = load_map[data_type] | |
key = type_map[data_type] | |
inputs = {key: load_function(data_paths, self.device)} | |
with torch.no_grad(): | |
embeddings = self.visual_encoder(inputs) | |
embeds = embeddings[key] | |
embeds = self.llama_proj(embeds).cpu().numpy() | |
return embeds | |
if __name__=="__main__": | |
a = PandaGPT(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048", "--lora", "./models/panda_gpt/ggml-adapter-model.bin","--temp", "0"]) | |
a.load_projection("./models/panda_gpt/adapter_model.bin") | |
a.chat_with_image( | |
{"image_paths": ["./media/llama1-logo.png"]}, | |
"what is the text in the picture? 'llama' or 'lambda'?") | |
a.chat("what is the color of it?") | |