Spaces:
Build error
Build error
static const size_t tensor_alignment = 32; | |
struct my_llama_hparams { | |
uint32_t n_vocab = 32000; | |
uint32_t n_ctx = 512; | |
uint32_t n_embd = 4096; | |
uint32_t n_ff = 11008; | |
uint32_t n_head = 32; | |
uint32_t n_head_kv = 32; | |
uint32_t n_layer = 32; | |
// float f_norm_eps = 1e-5f; // falcon | |
float f_norm_rms_eps = 1e-5f; // llama | |
float rope_freq_base = 10000.0f; | |
float rope_freq_scale = 1.0f; | |
uint32_t n_gqa() const { | |
return n_head/n_head_kv; | |
} | |
uint32_t n_embd_head() const { | |
return n_embd/n_head; | |
} | |
uint32_t n_embd_gqa() const { | |
return n_embd/n_gqa(); | |
} | |
bool operator!=(const my_llama_hparams& other) const { | |
return memcmp(this, &other, sizeof(other)); | |
} | |
}; | |
struct my_llama_layer { | |
// normalization | |
struct ggml_tensor * attention_norm; | |
// attention | |
struct ggml_tensor * wq; | |
struct ggml_tensor * wk; | |
struct ggml_tensor * wv; | |
struct ggml_tensor * wo; | |
// normalization | |
struct ggml_tensor * ffn_norm; | |
// ff | |
struct ggml_tensor * w1; | |
struct ggml_tensor * w2; | |
struct ggml_tensor * w3; | |
}; | |
struct my_llama_model { | |
struct my_llama_hparams hparams; | |
struct ggml_tensor * tok_embeddings; | |
struct ggml_tensor * norm; | |
struct ggml_tensor * output; | |
std::vector<my_llama_layer> layers; | |
}; | |
struct my_llama_lora_hparams { | |
uint32_t lora_r = 1; | |
uint32_t lora_alpha = 1; | |
uint32_t n_rank_attention_norm = 1; | |
uint32_t n_rank_wq = 4; | |
uint32_t n_rank_wk = 4; | |
uint32_t n_rank_wv = 4; | |
uint32_t n_rank_wo = 4; | |
uint32_t n_rank_ffn_norm = 1; | |
uint32_t n_rank_w1 = 4; | |
uint32_t n_rank_w2 = 4; | |
uint32_t n_rank_w3 = 4; | |
uint32_t n_rank_tok_embeddings = 4; | |
uint32_t n_rank_norm = 1; | |
uint32_t n_rank_output = 4; | |
bool operator!=(const my_llama_lora_hparams& other) const { | |
return memcmp(this, &other, sizeof(other)); | |
} | |
}; | |
struct my_llama_lora_layer { | |
// normalization | |
struct ggml_tensor * attention_norm_a; | |
struct ggml_tensor * attention_norm_b; | |
// attention | |
struct ggml_tensor * wq_a; | |
struct ggml_tensor * wq_b; | |
struct ggml_tensor * wk_a; | |
struct ggml_tensor * wk_b; | |
struct ggml_tensor * wv_a; | |
struct ggml_tensor * wv_b; | |
struct ggml_tensor * wo_a; | |
struct ggml_tensor * wo_b; | |
// normalization | |
struct ggml_tensor * ffn_norm_a; | |
struct ggml_tensor * ffn_norm_b; | |
// ff | |
struct ggml_tensor * w1_a; | |
struct ggml_tensor * w1_b; | |
struct ggml_tensor * w2_a; | |
struct ggml_tensor * w2_b; | |
struct ggml_tensor * w3_a; | |
struct ggml_tensor * w3_b; | |
}; | |
struct my_llama_lora { | |
struct ggml_context * ctx = NULL; | |
std::vector<uint8_t> data; | |
my_llama_lora_hparams hparams; | |
struct ggml_tensor * tok_embeddings_a; | |
struct ggml_tensor * tok_embeddings_b; | |
struct ggml_tensor * norm_a; | |
struct ggml_tensor * norm_b; | |
struct ggml_tensor * output_a; | |
struct ggml_tensor * output_b; | |
std::vector<my_llama_lora_layer> layers; | |
}; | |
// gguf constants | |
static const char * LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"; | |
static const char * LLM_KV_TRAINING_TYPE = "training.type"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"; | |
static const char * LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"; | |
// gguf constants (sync with gguf.py) | |
static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture"; | |
static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type"; | |
static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length"; | |
static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length"; | |
static const char * LLM_KV_BLOCK_COUNT = "%s.block_count"; | |
static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length"; | |
static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count"; | |
static const char * LLM_KV_ATTENTION_HEAD_COUNT_KV = "%s.attention.head_count_kv"; | |
static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon"; | |
static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count"; | |
static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp | |
static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear"; | |
static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd"; | |
static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm"; | |
static const char * LLM_TENSOR_OUTPUT = "output"; | |
static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm"; | |
static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q"; | |
static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k"; | |
static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v"; | |
static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output"; | |
static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm"; | |
static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate"; | |
static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down"; | |
static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up"; | |
static void print_params(struct my_llama_hparams * params) { | |
printf("%s: n_vocab: %u\n", __func__, params->n_vocab); | |
printf("%s: n_ctx: %u\n", __func__, params->n_ctx); | |
printf("%s: n_embd: %u\n", __func__, params->n_embd); | |
printf("%s: n_ff: %u\n", __func__, params->n_ff); | |
printf("%s: n_head: %u\n", __func__, params->n_head); | |
printf("%s: n_head_kv: %u\n", __func__, params->n_head_kv); | |
printf("%s: n_layer: %u\n", __func__, params->n_layer); | |
printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps); | |
printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base); | |
printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale); | |
} | |
static void print_lora_params(struct my_llama_lora_hparams * params) { | |
printf("%s: n_rank_attention_norm : %u\n", __func__, params->n_rank_attention_norm); | |
printf("%s: n_rank_wq : %u\n", __func__, params->n_rank_wq); | |
printf("%s: n_rank_wk : %u\n", __func__, params->n_rank_wk); | |
printf("%s: n_rank_wv : %u\n", __func__, params->n_rank_wv); | |
printf("%s: n_rank_wo : %u\n", __func__, params->n_rank_wo); | |
printf("%s: n_rank_ffn_norm : %u\n", __func__, params->n_rank_ffn_norm); | |
printf("%s: n_rank_w1 : %u\n", __func__, params->n_rank_w1); | |
printf("%s: n_rank_w2 : %u\n", __func__, params->n_rank_w2); | |
printf("%s: n_rank_w3 : %u\n", __func__, params->n_rank_w3); | |
printf("%s: n_rank_tok_embeddings : %u\n", __func__, params->n_rank_tok_embeddings); | |
printf("%s: n_rank_norm : %u\n", __func__, params->n_rank_norm); | |
printf("%s: n_rank_output : %u\n", __func__, params->n_rank_output); | |
} | |
static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_hparams * hparams, const char * expected_arch) { | |
std::string arch; | |
GGUF_GET_KEY(ctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); | |
if (expected_arch != NULL) { | |
if (arch != expected_arch) { | |
printf("%s: arch=%s expected_arch=%s\n", __func__, arch.c_str(), expected_arch); | |
} | |
GGML_ASSERT(arch == expected_arch); | |
} | |
std::vector<char> keybuf; | |
keybuf.resize(512); | |
auto kv = [&arch, &keybuf](const char * key) -> const char * { | |
snprintf(keybuf.data(), keybuf.size(), key, arch.c_str()); | |
return keybuf.data(); | |
}; | |
GGUF_GET_KEY(ctx, hparams->n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH)); | |
GGUF_GET_KEY(ctx, hparams->n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH)); | |
GGUF_GET_KEY(ctx, hparams->n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH)); | |
GGUF_GET_KEY(ctx, hparams->n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT)); | |
GGUF_GET_KEY(ctx, hparams->n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT)); | |
// n_head_kv is optional, default to n_head | |
hparams->n_head_kv = hparams->n_head; | |
GGUF_GET_KEY(ctx, hparams->n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV)); | |
float rope_freq_scale = 1.0f; | |
GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); | |
GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); | |
GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR)); | |
if (rope_freq_scale != 1.0f) { | |
hparams->rope_freq_scale = 1.0f / rope_freq_scale; | |
} | |
} | |
static void init_model(struct llama_model * input, struct my_llama_model * model, const char * fn_model, uint32_t n_ctx) { | |
auto & hparams = model->hparams; | |
std::vector<char> tn_buf; | |
tn_buf.resize(GGML_MAX_NAME); | |
auto tn = [&tn_buf](const char * key) -> const char * { | |
snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key); | |
return tn_buf.data(); | |
}; | |
auto tni = [&tn_buf](const char * key, int bid) -> const char * { | |
snprintf(tn_buf.data(), tn_buf.size(), key, bid); | |
std::string s = tn_buf.data(); | |
snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str()); | |
return tn_buf.data(); | |
}; | |
// get parameters directly from gguf file | |
{ | |
struct gguf_init_params params = { | |
/*.no_alloc = */ false, | |
/*.ctx = */ NULL, | |
}; | |
struct gguf_context * mctx = gguf_init_from_file(fn_model, params); | |
load_model_hparams_gguf(mctx, &hparams, "llama"); | |
gguf_free(mctx); | |
} | |
hparams.n_vocab = llama_n_vocab(input); | |
hparams.n_ctx = n_ctx; | |
// get tensors from llama_model (possibly mmapped) | |
model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD)); | |
model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM)); | |
model->output = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT)); | |
assert_shape_2d(model->tok_embeddings, hparams.n_embd, hparams.n_vocab); | |
assert_shape_1d(model->norm, hparams.n_embd); | |
assert_shape_2d(model->output, hparams.n_embd, hparams.n_vocab); | |
model->layers.resize(hparams.n_layer); | |
for (uint32_t i = 0; i < hparams.n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
layer.attention_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_NORM, i)); | |
layer.wq = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_Q, i)); | |
layer.wk = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_K, i)); | |
layer.wv = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_V, i)); | |
layer.wo = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_OUT, i)); | |
layer.ffn_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_NORM, i)); | |
layer.w1 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i)); | |
layer.w2 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i)); | |
layer.w3 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i)); | |
assert_shape_1d(layer.attention_norm, hparams.n_embd); | |
assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd); | |
assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd); | |
assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd); | |
assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd); | |
assert_shape_1d(layer.ffn_norm, hparams.n_embd); | |
assert_shape_2d(layer.w1, hparams.n_embd, hparams.n_ff); | |
assert_shape_2d(layer.w2, hparams.n_ff, hparams.n_embd); | |
assert_shape_2d(layer.w3, hparams.n_embd, hparams.n_ff); | |
} | |
} | |
static void set_param_lora(struct my_llama_lora * lora) { | |
const uint32_t n_layer = lora->layers.size(); | |
struct ggml_context* ctx = lora->ctx; | |
ggml_set_param(ctx, lora->tok_embeddings_a); | |
ggml_set_param(ctx, lora->tok_embeddings_b); | |
ggml_set_param(ctx, lora->norm_a); | |
ggml_set_param(ctx, lora->norm_b); | |
ggml_set_param(ctx, lora->output_a); | |
ggml_set_param(ctx, lora->output_b); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = lora->layers[i]; | |
ggml_set_param(ctx, layer.attention_norm_a); | |
ggml_set_param(ctx, layer.attention_norm_b); | |
ggml_set_param(ctx, layer.wq_a); | |
ggml_set_param(ctx, layer.wq_b); | |
ggml_set_param(ctx, layer.wk_a); | |
ggml_set_param(ctx, layer.wk_b); | |
ggml_set_param(ctx, layer.wv_a); | |
ggml_set_param(ctx, layer.wv_b); | |
ggml_set_param(ctx, layer.wo_a); | |
ggml_set_param(ctx, layer.wo_b); | |
ggml_set_param(ctx, layer.ffn_norm_a); | |
ggml_set_param(ctx, layer.ffn_norm_b); | |
ggml_set_param(ctx, layer.w1_a); | |
ggml_set_param(ctx, layer.w1_b); | |
ggml_set_param(ctx, layer.w2_a); | |
ggml_set_param(ctx, layer.w2_b); | |
ggml_set_param(ctx, layer.w3_a); | |
ggml_set_param(ctx, layer.w3_b); | |
} | |
} | |
static void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) { | |
ggml_allocr_alloc(alloc, lora->tok_embeddings_a); | |
ggml_allocr_alloc(alloc, lora->tok_embeddings_b); | |
ggml_allocr_alloc(alloc, lora->norm_a); | |
ggml_allocr_alloc(alloc, lora->norm_b); | |
ggml_allocr_alloc(alloc, lora->output_a); | |
ggml_allocr_alloc(alloc, lora->output_b); | |
for (uint32_t i = 0; i < lora->layers.size(); ++i) { | |
auto & layer = lora->layers[i]; | |
ggml_allocr_alloc(alloc, layer.attention_norm_a); | |
ggml_allocr_alloc(alloc, layer.attention_norm_b); | |
ggml_allocr_alloc(alloc, layer.wq_a); | |
ggml_allocr_alloc(alloc, layer.wq_b); | |
ggml_allocr_alloc(alloc, layer.wk_a); | |
ggml_allocr_alloc(alloc, layer.wk_b); | |
ggml_allocr_alloc(alloc, layer.wv_a); | |
ggml_allocr_alloc(alloc, layer.wv_b); | |
ggml_allocr_alloc(alloc, layer.wo_a); | |
ggml_allocr_alloc(alloc, layer.wo_b); | |
ggml_allocr_alloc(alloc, layer.ffn_norm_a); | |
ggml_allocr_alloc(alloc, layer.ffn_norm_b); | |
ggml_allocr_alloc(alloc, layer.w1_a); | |
ggml_allocr_alloc(alloc, layer.w1_b); | |
ggml_allocr_alloc(alloc, layer.w2_a); | |
ggml_allocr_alloc(alloc, layer.w2_b); | |
ggml_allocr_alloc(alloc, layer.w3_a); | |
ggml_allocr_alloc(alloc, layer.w3_b); | |
} | |
ggml_allocr_alloc(alloc, lora->tok_embeddings_a->grad); | |
ggml_allocr_alloc(alloc, lora->tok_embeddings_b->grad); | |
ggml_allocr_alloc(alloc, lora->norm_a->grad); | |
ggml_allocr_alloc(alloc, lora->norm_b->grad); | |
ggml_allocr_alloc(alloc, lora->output_a->grad); | |
ggml_allocr_alloc(alloc, lora->output_b->grad); | |
for (uint32_t i = 0; i < lora->layers.size(); ++i) { | |
auto & layer = lora->layers[i]; | |
ggml_allocr_alloc(alloc, layer.attention_norm_a->grad); | |
ggml_allocr_alloc(alloc, layer.attention_norm_b->grad); | |
ggml_allocr_alloc(alloc, layer.wq_a->grad); | |
ggml_allocr_alloc(alloc, layer.wq_b->grad); | |
ggml_allocr_alloc(alloc, layer.wk_a->grad); | |
ggml_allocr_alloc(alloc, layer.wk_b->grad); | |
ggml_allocr_alloc(alloc, layer.wv_a->grad); | |
ggml_allocr_alloc(alloc, layer.wv_b->grad); | |
ggml_allocr_alloc(alloc, layer.wo_a->grad); | |
ggml_allocr_alloc(alloc, layer.wo_b->grad); | |
ggml_allocr_alloc(alloc, layer.ffn_norm_a->grad); | |
ggml_allocr_alloc(alloc, layer.ffn_norm_b->grad); | |
ggml_allocr_alloc(alloc, layer.w1_a->grad); | |
ggml_allocr_alloc(alloc, layer.w1_b->grad); | |
ggml_allocr_alloc(alloc, layer.w2_a->grad); | |
ggml_allocr_alloc(alloc, layer.w2_b->grad); | |
ggml_allocr_alloc(alloc, layer.w3_a->grad); | |
ggml_allocr_alloc(alloc, layer.w3_b->grad); | |
} | |
} | |
static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) { | |
const auto & lparams = lora->hparams; | |
const uint32_t n_embd = model->hparams.n_embd; | |
const uint32_t n_embd_gqa = model->hparams.n_embd_gqa(); | |
const uint32_t n_layer = model->hparams.n_layer; | |
const uint32_t n_vocab = model->hparams.n_vocab; | |
const uint32_t n_ff = model->hparams.n_ff; | |
std::vector<char> tn_buf; | |
tn_buf.resize(GGML_MAX_NAME); | |
auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * { | |
snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix); | |
return tn_buf.data(); | |
}; | |
auto tni = [&tn_buf](const char * key, const char * suffix, int bid) -> const char * { | |
snprintf(tn_buf.data(), tn_buf.size(), key, bid); | |
std::string s = tn_buf.data(); | |
snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix); | |
return tn_buf.data(); | |
}; | |
// context for lora tensors without their data | |
struct ggml_init_params ctx_lora_params; | |
ctx_lora_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18); | |
ctx_lora_params.mem_buffer = NULL; | |
ctx_lora_params.no_alloc = true; | |
struct ggml_context * ctx = ggml_init(ctx_lora_params); | |
lora->ctx = ctx; | |
lora->tok_embeddings_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_embd); | |
lora->tok_embeddings_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_vocab); | |
lora->norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, n_embd); | |
lora->norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, 1); | |
lora->output_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_embd); | |
lora->output_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_vocab); | |
ggml_set_name(lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_a")); | |
ggml_set_name(lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_b")); | |
ggml_set_name(lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_a")); | |
ggml_set_name(lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_b")); | |
ggml_set_name(lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.lora_a")); | |
ggml_set_name(lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.lora_b")); | |
lora->layers.resize(n_layer); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = lora->layers[i]; | |
layer.attention_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, n_embd); | |
layer.attention_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, 1); | |
layer.wq_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd); | |
layer.wq_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd); | |
layer.wk_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd); | |
layer.wk_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd_gqa); | |
layer.wv_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd); | |
layer.wv_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd_gqa); | |
layer.wo_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd); | |
layer.wo_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd); | |
layer.ffn_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, n_embd); | |
layer.ffn_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, 1); | |
layer.w1_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_embd); | |
layer.w1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_ff); | |
layer.w2_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_ff); | |
layer.w2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_embd); | |
layer.w3_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_embd); | |
layer.w3_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_ff); | |
ggml_set_name(layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_a", i)); | |
ggml_set_name(layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_b", i)); | |
ggml_set_name(layer.wq_a, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_a", i)); | |
ggml_set_name(layer.wq_b, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_b", i)); | |
ggml_set_name(layer.wk_a, tni(LLM_TENSOR_ATTN_K, ".weight.lora_a", i)); | |
ggml_set_name(layer.wk_b, tni(LLM_TENSOR_ATTN_K, ".weight.lora_b", i)); | |
ggml_set_name(layer.wv_a, tni(LLM_TENSOR_ATTN_V, ".weight.lora_a", i)); | |
ggml_set_name(layer.wv_b, tni(LLM_TENSOR_ATTN_V, ".weight.lora_b", i)); | |
ggml_set_name(layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_a", i)); | |
ggml_set_name(layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_b", i)); | |
ggml_set_name(layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_a", i)); | |
ggml_set_name(layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_b", i)); | |
ggml_set_name(layer.w1_a, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_a", i)); | |
ggml_set_name(layer.w1_b, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_b", i)); | |
ggml_set_name(layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_a", i)); | |
ggml_set_name(layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_b", i)); | |
ggml_set_name(layer.w3_a, tni(LLM_TENSOR_FFN_UP, ".weight.lora_a", i)); | |
ggml_set_name(layer.w3_b, tni(LLM_TENSOR_FFN_UP, ".weight.lora_b", i)); | |
} | |
set_param_lora(lora); | |
// measure data size | |
struct ggml_allocr * alloc = NULL; | |
alloc = ggml_allocr_new_measure(tensor_alignment); | |
alloc_lora(alloc, lora); | |
// allocate data | |
lora->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment); | |
ggml_allocr_free(alloc); | |
alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment); | |
alloc_lora(alloc, lora); | |
ggml_allocr_free(alloc); | |
} | |
static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) { | |
const uint32_t n_layer = lora->layers.size(); | |
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max); | |
randomize_tensor_normal(lora->tok_embeddings_a, rnd); | |
randomize_tensor_normal(lora->tok_embeddings_b, rnd); | |
randomize_tensor_normal(lora->norm_a, rnd); | |
randomize_tensor_normal(lora->norm_b, rnd); | |
randomize_tensor_normal(lora->output_a, rnd); | |
randomize_tensor_normal(lora->output_b, rnd); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = lora->layers[i]; | |
randomize_tensor_normal(layer.attention_norm_a, rnd); | |
randomize_tensor_normal(layer.attention_norm_b, rnd); | |
randomize_tensor_normal(layer.wq_a, rnd); | |
randomize_tensor_normal(layer.wq_b, rnd); | |
randomize_tensor_normal(layer.wk_a, rnd); | |
randomize_tensor_normal(layer.wk_b, rnd); | |
randomize_tensor_normal(layer.wv_a, rnd); | |
randomize_tensor_normal(layer.wv_b, rnd); | |
randomize_tensor_normal(layer.wo_a, rnd); | |
randomize_tensor_normal(layer.wo_b, rnd); | |
randomize_tensor_normal(layer.ffn_norm_a, rnd); | |
randomize_tensor_normal(layer.ffn_norm_b, rnd); | |
randomize_tensor_normal(layer.w1_a, rnd); | |
randomize_tensor_normal(layer.w1_b, rnd); | |
randomize_tensor_normal(layer.w2_a, rnd); | |
randomize_tensor_normal(layer.w2_b, rnd); | |
randomize_tensor_normal(layer.w3_a, rnd); | |
randomize_tensor_normal(layer.w3_b, rnd); | |
} | |
free_random_normal_distribution(rnd); | |
} | |
static struct ggml_tensor * llama_build_lora_finetune_graphs( | |
struct my_llama_model * model, | |
struct my_llama_lora * lora, | |
struct ggml_allocr * alloc, | |
struct ggml_context * ctx, | |
struct ggml_cgraph * gf, | |
struct ggml_cgraph * gb, | |
struct ggml_cgraph * gb_tmp, | |
struct ggml_tensor * * logits, | |
struct ggml_tensor * tokens_input, | |
struct ggml_tensor * targets, | |
const int n_tokens, | |
const int n_batch, | |
const bool enable_flash_attn, | |
const bool enable_checkpointing) { | |
ggml_set_scratch(ctx, { 0, 0, nullptr, }); | |
const int n_past = 0; | |
const int N = n_tokens; | |
const auto & hparams = model->hparams; | |
const int n_ctx = hparams.n_ctx; | |
const int n_vocab = hparams.n_vocab; | |
const int n_embd = hparams.n_embd; | |
const int n_layer = hparams.n_layer; | |
const int n_head = hparams.n_head; | |
const int n_head_kv = hparams.n_head_kv; | |
const int n_ff = hparams.n_ff; | |
const int n_rot = hparams.n_embd_head(); | |
const int n_embd_head = hparams.n_embd_head(); | |
const int n_embd_gqa = hparams.n_embd_gqa(); | |
const float rms_norm_eps = hparams.f_norm_rms_eps; | |
const float rope_freq_base = hparams.rope_freq_base; | |
const float rope_freq_scale = hparams.rope_freq_scale; | |
GGML_ASSERT((size_t) n_layer == lora->layers.size()); | |
auto set_name = [](struct ggml_tensor * t, const char * n) { | |
ggml_set_name(t, n); | |
if (t->grad) { | |
ggml_format_name(t->grad, "%s->grad", n); | |
} | |
}; | |
// KQ_pos - contains the positions | |
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N); | |
ggml_allocr_alloc(alloc, KQ_pos); | |
if (!ggml_allocr_is_measure(alloc)) { | |
int * data = (int *) KQ_pos->data; | |
for (int i = 0; i < N; ++i) { | |
data[i] = n_past + i; | |
} | |
} | |
// rope has so much parameters that we make a custom function for it | |
auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale] | |
(struct ggml_tensor * t) -> struct ggml_tensor * { | |
// not capturing these, to silcence warnings | |
const int rope_mode = 0; | |
return ggml_rope_custom(ctx, | |
t, KQ_pos, n_rot, rope_mode, n_ctx, | |
rope_freq_base, rope_freq_scale); | |
}; | |
set_name(tokens_input, "tokens_input"); | |
set_name(targets, "targets"); | |
GGML_ASSERT(tokens_input->type == GGML_TYPE_I32); | |
auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) { | |
if (ggml_is_quantized(a->type)) { | |
return ggml_add_cast(ctx, a, b, GGML_TYPE_F32); | |
} else if (a->type == GGML_TYPE_F32) { | |
return ggml_add(ctx, a, b); | |
} else { | |
die_fmt("%s: Finetuning on tensors with type '%s' is not yet supported.\n", | |
__func__, ggml_type_name(a->type)); | |
} | |
}; | |
struct ggml_tensor * tok_embeddings = add_to_f32(ctx, model->tok_embeddings, ggml_mul_mat(ctx, lora->tok_embeddings_a, lora->tok_embeddings_b)); | |
struct ggml_tensor * norm = add_to_f32(ctx, model->norm, ggml_mul_mat(ctx, lora->norm_a, lora->norm_b)); | |
struct ggml_tensor * output = add_to_f32(ctx, model->output, ggml_mul_mat(ctx, lora->output_a, lora->output_b)); | |
struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch); | |
struct ggml_tensor * t01 = ggml_get_rows(ctx, tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch); | |
struct ggml_tensor * cur = t01; | |
std::vector<struct ggml_tensor *> checkpoints; | |
if (enable_checkpointing) { | |
checkpoints.push_back(tokens_input); | |
checkpoints.push_back(targets); | |
checkpoints.push_back(t00); | |
checkpoints.push_back(t01); | |
} | |
struct ggml_tensor * kv_scale = NULL; | |
if (!enable_flash_attn) { | |
kv_scale = ggml_new_f32(ctx, 1.0f/sqrtf(float(n_embd)/n_head)); | |
} | |
for (int il = 0; il < n_layer; ++il) { | |
struct my_llama_layer & layer = model->layers[il]; | |
struct my_llama_lora_layer & llayer = lora->layers[il]; | |
struct ggml_tensor * attention_norm = add_to_f32(ctx, layer.attention_norm, ggml_mul_mat(ctx, llayer.attention_norm_a, llayer.attention_norm_b)); | |
struct ggml_tensor * ffn_norm = add_to_f32(ctx, layer.ffn_norm, ggml_mul_mat(ctx, llayer.ffn_norm_a, llayer.ffn_norm_b)); | |
struct ggml_tensor * wq = add_to_f32(ctx, layer.wq, ggml_mul_mat(ctx, llayer.wq_a, llayer.wq_b)); | |
struct ggml_tensor * wk = add_to_f32(ctx, layer.wk, ggml_mul_mat(ctx, llayer.wk_a, llayer.wk_b)); | |
struct ggml_tensor * wv = add_to_f32(ctx, layer.wv, ggml_mul_mat(ctx, llayer.wv_a, llayer.wv_b)); | |
struct ggml_tensor * wo = add_to_f32(ctx, layer.wo, ggml_mul_mat(ctx, llayer.wo_a, llayer.wo_b)); | |
struct ggml_tensor * w1 = add_to_f32(ctx, layer.w1, ggml_mul_mat(ctx, llayer.w1_a, llayer.w1_b)); | |
struct ggml_tensor * w2 = add_to_f32(ctx, layer.w2, ggml_mul_mat(ctx, llayer.w2_a, llayer.w2_b)); | |
struct ggml_tensor * w3 = add_to_f32(ctx, layer.w3, ggml_mul_mat(ctx, llayer.w3_a, llayer.w3_b)); | |
struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch); | |
struct ggml_tensor * t03 = ggml_repeat (ctx, attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch); | |
struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch); | |
struct ggml_tensor * t05 = ggml_mul_mat (ctx, wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch); | |
struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd_head, n_head, N, n_batch); | |
struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd_head, n_head, N, n_batch); | |
struct ggml_tensor * t08 = ggml_mul_mat (ctx, wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd_gqa, N*n_batch); | |
struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd_head, n_head_kv, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd_head, n_head_kv, N, n_batch); | |
struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd_head, n_head_kv, N, n_batch); | |
struct ggml_tensor * t11; | |
if (ggml_is_quantized(wv->type)) { | |
struct ggml_tensor * t11_1 = ggml_mul_mat (ctx, wv, t04); set_name(t11_1, "t11_1"); assert_shape_2d(t11_1, n_embd_gqa, N*n_batch); | |
struct ggml_tensor * t11_2 = ggml_transpose(ctx, t11_1); set_name(t11_2, "t11_2"); assert_shape_2d(t11_2, N*n_batch, n_embd_gqa); | |
t11 = ggml_cont (ctx, t11_2); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa); | |
} else { | |
t11 = ggml_mul_mat (ctx, t04, wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa); | |
} | |
struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd_head, n_head_kv); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd_head, n_head_kv); | |
struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd_head, N, n_head, n_batch); | |
struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd_head, N, n_head_kv, n_batch); | |
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch); | |
struct ggml_tensor * t16; | |
if (enable_flash_attn) { | |
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); | |
} else { | |
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch); | |
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch); | |
struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch); | |
struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch); | |
t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch); | |
} | |
struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd_head, n_head, N, n_batch); | |
struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd_head, n_head, N, n_batch); | |
struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch); | |
struct ggml_tensor * t20 = ggml_mul_mat (ctx, wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch); | |
struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch); | |
struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, rms_norm_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch); | |
struct ggml_tensor * t23 = ggml_repeat (ctx, ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch); | |
struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch); | |
struct ggml_tensor * t25 = ggml_mul_mat (ctx, w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch); | |
struct ggml_tensor * t26 = ggml_mul_mat (ctx, w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch); | |
struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch); | |
struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch); | |
struct ggml_tensor * t29 = ggml_mul_mat (ctx, w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch); | |
struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch); | |
cur = t30; | |
if (enable_checkpointing) { | |
checkpoints.push_back(cur); | |
} | |
} | |
struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch); | |
struct ggml_tensor * t32 = ggml_repeat (ctx, norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch); | |
struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch); | |
struct ggml_tensor * t34 = ggml_mul_mat (ctx, output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch); | |
struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch); | |
struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1); | |
if (enable_checkpointing) { | |
checkpoints.push_back(t31); | |
checkpoints.push_back(t32); | |
checkpoints.push_back(t33); | |
checkpoints.push_back(t34); | |
checkpoints.push_back(t35); | |
checkpoints.push_back(t36); | |
} | |
ggml_build_forward_expand(gf, t36); | |
if (enable_checkpointing) { | |
ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size()); | |
} else { | |
*gb = *gf; | |
ggml_build_backward_expand(ctx, gf, gb, true); | |
} | |
GGML_ASSERT(alloc != NULL); | |
// make sure some tensors are not reallocated by inserting new temporary nodes depending on them | |
int n_leafs_before = gb->n_leafs; | |
int n_nodes_before = gb->n_nodes; | |
struct ggml_tensor * one = ggml_new_f32(ctx, 1.0f); | |
// output tensors | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, one)); | |
// input gradient | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, one)); | |
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL); | |
ggml_allocr_alloc(alloc, t36->grad); | |
// KQ_pos | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, one)); | |
// make sure base model tensors data cannot be used in viewable operations | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, one)); | |
for (int il = 0; il < n_layer; ++il) { | |
struct my_llama_layer & layer = model->layers[il]; | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, one)); | |
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, one)); | |
} | |
// allocating checkpoints in one block to reduce memory fragmentation | |
// note: they will be freed in reverse order | |
for (unsigned int i = 0; i < checkpoints.size(); ++i) { | |
if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) { | |
ggml_allocr_alloc(alloc, checkpoints[i]); | |
} | |
} | |
ggml_allocr_alloc_graph(alloc, gb); | |
// remove the additional nodes and leafs | |
for (int i = n_leafs_before; i < gb->n_leafs; ++i) { | |
gb->leafs[i] = NULL; | |
} | |
for (int i = n_nodes_before; i < gb->n_nodes; ++i) { | |
gb->nodes[i] = NULL; | |
} | |
gb->n_leafs = n_leafs_before; | |
gb->n_nodes = n_nodes_before; | |
*logits = t35; | |
return t36; | |
} | |
static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora) { | |
// NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read | |
std::string arch; | |
std::vector<char> keybuf; | |
keybuf.resize(512); | |
GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE); | |
GGML_ASSERT(arch == "llama"); | |
uint32_t ftype_u; | |
GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE); | |
GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32); | |
struct my_llama_hparams hparams; | |
load_model_hparams_gguf(fctx, &hparams, arch.c_str()); | |
// parameters that define tensor shapes must match | |
GGML_ASSERT(hparams.n_embd == model->hparams.n_embd); | |
GGML_ASSERT(hparams.n_ff == model->hparams.n_ff); | |
GGML_ASSERT(hparams.n_head == model->hparams.n_head); | |
GGML_ASSERT(hparams.n_head_kv == model->hparams.n_head_kv); | |
GGML_ASSERT(hparams.n_layer == model->hparams.n_layer); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_tok_embeddings, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_output, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_attention_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_wq, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_Q); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_wk, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_K); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_wv, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_V); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_wo, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_NORM); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_w1, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_GATE); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_w2, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN); | |
GGUF_GET_KEY(fctx, lora->hparams.n_rank_w3, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_UP); | |
init_lora(model, lora); | |
copy_tensor_by_name(lora->tok_embeddings_a, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_a)); | |
copy_tensor_by_name(lora->tok_embeddings_b, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_b)); | |
copy_tensor_by_name(lora->norm_a, f_ggml_ctx, ggml_get_name(lora->norm_a)); | |
copy_tensor_by_name(lora->norm_b, f_ggml_ctx, ggml_get_name(lora->norm_b)); | |
copy_tensor_by_name(lora->output_a, f_ggml_ctx, ggml_get_name(lora->output_a)); | |
copy_tensor_by_name(lora->output_b, f_ggml_ctx, ggml_get_name(lora->output_b)); | |
for (uint32_t i = 0; i < lora->layers.size(); ++i) { | |
auto & layer = lora->layers[i]; | |
copy_tensor_by_name(layer.attention_norm_a, f_ggml_ctx, ggml_get_name(layer.attention_norm_a)); | |
copy_tensor_by_name(layer.attention_norm_b, f_ggml_ctx, ggml_get_name(layer.attention_norm_b)); | |
copy_tensor_by_name(layer.wq_a, f_ggml_ctx, ggml_get_name(layer.wq_a)); | |
copy_tensor_by_name(layer.wq_b, f_ggml_ctx, ggml_get_name(layer.wq_b)); | |
copy_tensor_by_name(layer.wk_a, f_ggml_ctx, ggml_get_name(layer.wk_a)); | |
copy_tensor_by_name(layer.wk_b, f_ggml_ctx, ggml_get_name(layer.wk_b)); | |
copy_tensor_by_name(layer.wv_a, f_ggml_ctx, ggml_get_name(layer.wv_a)); | |
copy_tensor_by_name(layer.wv_b, f_ggml_ctx, ggml_get_name(layer.wv_b)); | |
copy_tensor_by_name(layer.wo_a, f_ggml_ctx, ggml_get_name(layer.wo_a)); | |
copy_tensor_by_name(layer.wo_b, f_ggml_ctx, ggml_get_name(layer.wo_b)); | |
copy_tensor_by_name(layer.ffn_norm_a, f_ggml_ctx, ggml_get_name(layer.ffn_norm_a)); | |
copy_tensor_by_name(layer.ffn_norm_b, f_ggml_ctx, ggml_get_name(layer.ffn_norm_b)); | |
copy_tensor_by_name(layer.w1_a, f_ggml_ctx, ggml_get_name(layer.w1_a)); | |
copy_tensor_by_name(layer.w1_b, f_ggml_ctx, ggml_get_name(layer.w1_b)); | |
copy_tensor_by_name(layer.w2_a, f_ggml_ctx, ggml_get_name(layer.w2_a)); | |
copy_tensor_by_name(layer.w2_b, f_ggml_ctx, ggml_get_name(layer.w2_b)); | |
copy_tensor_by_name(layer.w3_a, f_ggml_ctx, ggml_get_name(layer.w3_a)); | |
copy_tensor_by_name(layer.w3_b, f_ggml_ctx, ggml_get_name(layer.w3_b)); | |
} | |
} | |
static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora) { | |
const char * arch = "llama"; | |
enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32; | |
std::vector<char> keybuf; | |
keybuf.resize(512); | |
auto kv = [arch, &keybuf](const char * key) -> const char * { | |
snprintf(keybuf.data(), keybuf.size(), key, arch); | |
return keybuf.data(); | |
}; | |
gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch); | |
gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype); | |
gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx); | |
gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd); | |
gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff); | |
gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head); | |
gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV), model->hparams.n_head_kv); | |
gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer); | |
gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_embd_head()); | |
gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps); | |
gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base); | |
gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), model->hparams.rope_freq_scale); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, lora->hparams.n_rank_tok_embeddings); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, lora->hparams.n_rank_norm); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT, lora->hparams.n_rank_output); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, lora->hparams.n_rank_attention_norm); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_Q, lora->hparams.n_rank_wq); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_K, lora->hparams.n_rank_wk); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_V, lora->hparams.n_rank_wv); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, lora->hparams.n_rank_wo); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_NORM, lora->hparams.n_rank_ffn_norm); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_GATE, lora->hparams.n_rank_w1); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, lora->hparams.n_rank_w2); | |
gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_UP, lora->hparams.n_rank_w3); | |
gguf_add_tensor(fctx, lora->tok_embeddings_a); | |
gguf_add_tensor(fctx, lora->tok_embeddings_b); | |
gguf_add_tensor(fctx, lora->norm_a); | |
gguf_add_tensor(fctx, lora->norm_b); | |
gguf_add_tensor(fctx, lora->output_a); | |
gguf_add_tensor(fctx, lora->output_b); | |
for (uint32_t i = 0; i < lora->layers.size(); ++i) { | |
auto & layer = lora->layers[i]; | |
gguf_add_tensor(fctx, layer.attention_norm_a); | |
gguf_add_tensor(fctx, layer.attention_norm_b); | |
gguf_add_tensor(fctx, layer.wq_a); | |
gguf_add_tensor(fctx, layer.wq_b); | |
gguf_add_tensor(fctx, layer.wk_a); | |
gguf_add_tensor(fctx, layer.wk_b); | |
gguf_add_tensor(fctx, layer.wv_a); | |
gguf_add_tensor(fctx, layer.wv_b); | |
gguf_add_tensor(fctx, layer.wo_a); | |
gguf_add_tensor(fctx, layer.wo_b); | |
gguf_add_tensor(fctx, layer.ffn_norm_a); | |
gguf_add_tensor(fctx, layer.ffn_norm_b); | |
gguf_add_tensor(fctx, layer.w1_a); | |
gguf_add_tensor(fctx, layer.w1_b); | |
gguf_add_tensor(fctx, layer.w2_a); | |
gguf_add_tensor(fctx, layer.w2_b); | |
gguf_add_tensor(fctx, layer.w3_a); | |
gguf_add_tensor(fctx, layer.w3_b); | |
} | |
} | |
static void load_checkpoint_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { | |
std::string train_type = LLM_KV_TRAINING_TYPE_FINETUNE_LORA; | |
GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE); | |
GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_FINETUNE_LORA); | |
load_train_state_gguf(fctx, f_ggml_ctx, train); | |
load_llama_lora_gguf(fctx, f_ggml_ctx, model, lora); | |
} | |
static void save_checkpoint_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { | |
gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA); | |
save_llama_lora_gguf(fctx, model, lora); | |
save_train_state_gguf(fctx, train); | |
} | |
static bool load_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { | |
struct ggml_context * f_ggml_ctx; | |
struct gguf_init_params params; | |
params.no_alloc = false; | |
params.ctx = &f_ggml_ctx; | |
struct gguf_context * fctx = gguf_init_from_file(filename, params); | |
if (fctx == NULL) { | |
return false; | |
} | |
load_checkpoint_lora_gguf(fctx, f_ggml_ctx, model, lora, train); | |
gguf_free(fctx); | |
return true; | |
} | |
static void save_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) { | |
printf("%s: saving to %s\n", __func__, filename); | |
struct gguf_context * fctx = gguf_init_empty(); | |
save_checkpoint_lora_gguf(fctx, model, lora, train); | |
// write file | |
const bool only_meta = false; | |
gguf_write_to_file(fctx, filename, only_meta); | |
gguf_free(fctx); | |
} | |
struct llama_file { | |
// use FILE * so we don't have to re-open the file to mmap | |
FILE * fp; | |
size_t size; | |
llama_file(const char * fname, const char * mode) { | |
fp = std::fopen(fname, mode); | |
if (fp == NULL) { | |
size = 0; | |
} else { | |
seek(0, SEEK_END); | |
size = tell(); | |
seek(0, SEEK_SET); | |
} | |
} | |
size_t tell() const { | |
__int64 ret = _ftelli64(fp); | |
long ret = std::ftell(fp); | |
GGML_ASSERT(ret != -1); // this really shouldn't fail | |
return (size_t) ret; | |
} | |
void seek(size_t offset, int whence) { | |
int ret = _fseeki64(fp, (__int64) offset, whence); | |
int ret = std::fseek(fp, (long) offset, whence); | |
GGML_ASSERT(ret == 0); // same | |
} | |
void read_raw(void * ptr, size_t size) { | |
if (size == 0) { | |
return; | |
} | |
errno = 0; | |
std::size_t ret = std::fread(ptr, size, 1, fp); | |
if (ferror(fp)) { | |
die_fmt("read error: %s", strerror(errno)); | |
} | |
if (ret != 1) { | |
die("unexpectedly reached end of file"); | |
} | |
} | |
std::uint32_t read_u32() { | |
std::uint32_t ret; | |
read_raw(&ret, sizeof(ret)); | |
return ret; | |
} | |
std::string read_string(std::uint32_t len) { | |
std::vector<char> chars(len); | |
read_raw(chars.data(), len); | |
return std::string(chars.data(), len); | |
} | |
void write_raw(const void * ptr, size_t size) { | |
if (size == 0) { | |
return; | |
} | |
errno = 0; | |
size_t ret = std::fwrite(ptr, size, 1, fp); | |
if (ret != 1) { | |
die_fmt("write error: %s", strerror(errno)); | |
} | |
} | |
void write_u32(std::uint32_t val) { | |
write_raw(&val, sizeof(val)); | |
} | |
~llama_file() { | |
if (fp) { | |
std::fclose(fp); | |
} | |
} | |
}; | |
static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor, const char * name) { | |
if (tensor == NULL) { | |
file->write_u32(0); | |
file->write_u32(0); | |
file->write_u32(GGML_TYPE_F32); | |
file->seek((0-file->tell()) & 31, SEEK_CUR); | |
return; | |
} | |
if (name == NULL) { | |
name = ggml_get_name(tensor); | |
} | |
uint32_t name_len = strlen(name); | |
uint32_t nd = tensor->n_dims; | |
uint32_t ne[4] = { (uint32_t)tensor->ne[0], | |
(uint32_t)tensor->ne[1], | |
(uint32_t)tensor->ne[2], | |
(uint32_t)tensor->ne[3] }; | |
file->write_u32(nd); | |
file->write_u32(name_len); | |
file->write_u32(tensor->type); | |
file->write_raw(ne, sizeof(ne[0]) * nd); | |
file->write_raw(name, name_len); | |
file->seek((0-file->tell()) & 31, SEEK_CUR); | |
file->write_raw(tensor->data, ggml_nbytes(tensor)); | |
} | |
static void save_as_llama_lora(const char * filename, struct my_llama_lora * lora) { | |
printf("%s: saving to %s\n", __func__, filename); | |
struct llama_file file(filename, "wb"); | |
if (file.fp == NULL) { | |
return; | |
} | |
std::vector<char> tn_buf; | |
tn_buf.resize(GGML_MAX_NAME); | |
auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * { | |
snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix); | |
return tn_buf.data(); | |
}; | |
auto tni = [&tn_buf](const char * key, int bid, const char * suffix) -> const char * { | |
snprintf(tn_buf.data(), tn_buf.size(), key, bid); | |
std::string s = tn_buf.data(); | |
snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix); | |
return tn_buf.data(); | |
}; | |
uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla' | |
// write_magic | |
file.write_u32(LLAMA_FILE_MAGIC_LORA); // magic | |
file.write_u32(1); // version | |
// write_hparams | |
file.write_u32(lora->hparams.lora_r); | |
file.write_u32(lora->hparams.lora_alpha); | |
// write tensors | |
write_tensor(&file, lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraA")); | |
write_tensor(&file, lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraB")); | |
write_tensor(&file, lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraA")); | |
write_tensor(&file, lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraB")); | |
write_tensor(&file, lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.loraA")); | |
write_tensor(&file, lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.loraB")); | |
for (uint32_t i = 0; i < lora->layers.size(); ++i) { | |
auto & layer = lora->layers[i]; | |
write_tensor(&file, layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraA")); | |
write_tensor(&file, layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraB")); | |
write_tensor(&file, layer.wq_a, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraA")); | |
write_tensor(&file, layer.wq_b, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraB")); | |
write_tensor(&file, layer.wk_a, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraA")); | |
write_tensor(&file, layer.wk_b, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraB")); | |
write_tensor(&file, layer.wv_a, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraA")); | |
write_tensor(&file, layer.wv_b, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraB")); | |
write_tensor(&file, layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraA")); | |
write_tensor(&file, layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraB")); | |
write_tensor(&file, layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraA")); | |
write_tensor(&file, layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraB")); | |
write_tensor(&file, layer.w1_a, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraA")); | |
write_tensor(&file, layer.w1_b, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraB")); | |
write_tensor(&file, layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraA")); | |
write_tensor(&file, layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraB")); | |
write_tensor(&file, layer.w3_a, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraA")); | |
write_tensor(&file, layer.w3_b, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraB")); | |
} | |
} | |
struct train_params { | |
struct train_params_common common; | |
const char * fn_model_base; | |
const char * fn_lora_out; | |
bool only_write_lora; | |
float f_norm_rms_eps; | |
float rope_freq_base; | |
float rope_freq_scale; | |
bool custom_f_norm_rms_eps; | |
bool custom_rope_freq_base; | |
bool custom_rope_freq_scale; | |
int32_t lora_r; | |
int32_t lora_alpha; | |
bool custom_lora_alpha; | |
uint32_t n_rank_attention_norm; | |
uint32_t n_rank_wq; | |
uint32_t n_rank_wk; | |
uint32_t n_rank_wv; | |
uint32_t n_rank_wo; | |
uint32_t n_rank_ffn_norm; | |
uint32_t n_rank_w1; | |
uint32_t n_rank_w2; | |
uint32_t n_rank_w3; | |
uint32_t n_rank_tok_embeddings; | |
uint32_t n_rank_norm; | |
uint32_t n_rank_output; | |
bool custom_n_rank_attention_norm; | |
bool custom_n_rank_wq; | |
bool custom_n_rank_wk; | |
bool custom_n_rank_wv; | |
bool custom_n_rank_wo; | |
bool custom_n_rank_ffn_norm; | |
bool custom_n_rank_w1; | |
bool custom_n_rank_w2; | |
bool custom_n_rank_w3; | |
bool custom_n_rank_tok_embeddings; | |
bool custom_n_rank_norm; | |
bool custom_n_rank_output; | |
}; | |
static struct train_params get_default_train_params() { | |
struct train_params params; | |
params.common = get_default_train_params_common(); | |
params.fn_model_base = ""; | |
params.fn_lora_out = "ggml-lora-ITERATION-f32.gguf"; | |
params.only_write_lora = false; | |
params.f_norm_rms_eps = 1e-5f; | |
params.rope_freq_base = 10000.0f; | |
params.rope_freq_scale = 1.0f; | |
params.custom_f_norm_rms_eps = false; | |
params.custom_rope_freq_base = false; | |
params.custom_rope_freq_scale = false; | |
params.lora_r = 4; | |
params.lora_alpha = 4; | |
params.custom_lora_alpha = false; | |
params.n_rank_attention_norm = 1; | |
params.n_rank_wq = 4; | |
params.n_rank_wk = 4; | |
params.n_rank_wv = 4; | |
params.n_rank_wo = 4; | |
params.n_rank_ffn_norm = 1; | |
params.n_rank_w1 = 4; | |
params.n_rank_w2 = 4; | |
params.n_rank_w3 = 4; | |
params.n_rank_tok_embeddings = 4; | |
params.n_rank_norm = 1; | |
params.n_rank_output = 4; | |
params.custom_n_rank_attention_norm = false; | |
params.custom_n_rank_wq = false; | |
params.custom_n_rank_wk = false; | |
params.custom_n_rank_wv = false; | |
params.custom_n_rank_wo = false; | |
params.custom_n_rank_ffn_norm = false; | |
params.custom_n_rank_w1 = false; | |
params.custom_n_rank_w2 = false; | |
params.custom_n_rank_w3 = false; | |
params.custom_n_rank_tok_embeddings = false; | |
params.custom_n_rank_norm = false; | |
params.custom_n_rank_output = false; | |
return params; | |
} | |
static void train_print_usage(int argc, char ** argv, const struct train_params * params) { | |
fprintf(stderr, "usage: %s [options]\n", argv[0]); | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "options:\n"); | |
fprintf(stderr, " -h, --help show this help message and exit\n"); | |
fprintf(stderr, " --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base); | |
fprintf(stderr, " --lora-out FNAME path to save llama lora (default '%s')\n", params->fn_lora_out); | |
fprintf(stderr, " --only-write-lora only save llama lora, don't do any training. use this if you only want to convert a checkpoint to a lora adapter.\n"); | |
fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps); | |
fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base); | |
fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale); | |
fprintf(stderr, " --lora-alpha N LORA alpha : resulting LORA scaling is alpha/r. (default %d)\n", params->lora_alpha); | |
fprintf(stderr, " --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default %d)\n", params->lora_r); | |
fprintf(stderr, " --rank-att-norm N LORA rank for attention norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); | |
fprintf(stderr, " --rank-ffn-norm N LORA rank for feed-forward norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); | |
fprintf(stderr, " --rank-out-norm N LORA rank for output norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n"); | |
fprintf(stderr, " --rank-tok-embd N LORA rank for token embeddings tensor, overrides default rank.\n"); | |
fprintf(stderr, " --rank-out N LORA rank for output tensor, overrides default rank.\n"); | |
fprintf(stderr, " --rank-wq N LORA rank for wq tensor, overrides default rank.\n"); | |
fprintf(stderr, " --rank-wk N LORA rank for wk tensor, overrides default rank.\n"); | |
fprintf(stderr, " --rank-wv N LORA rank for wv tensor, overrides default rank.\n"); | |
fprintf(stderr, " --rank-wo N LORA rank for wo tensor, overrides default rank.\n"); | |
fprintf(stderr, " --rank-w1 N LORA rank for w1 tensor, overrides default rank.\n"); | |
fprintf(stderr, " --rank-w2 N LORA rank for w2 tensor, overrides default rank.\n"); | |
fprintf(stderr, " --rank-w3 N LORA rank for w3 tensor, overrides default rank.\n"); | |
print_common_train_usage(argc, argv, ¶ms->common); | |
} | |
static bool train_params_parse(int argc, char ** argv, struct train_params * params) { | |
bool invalid_param = false; | |
std::string arg; | |
struct train_params default_params = get_default_train_params(); | |
const std::string arg_prefix = "--"; | |
for (int i = 1; i < argc; i++) { | |
arg = argv[i]; | |
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
std::replace(arg.begin(), arg.end(), '_', '-'); | |
} | |
if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) { | |
if (invalid_param) { | |
break; | |
} else if (params->common.print_usage) { | |
train_print_usage(argc, argv, &default_params); | |
exit(0); | |
} | |
} else if (arg == "--model-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_model_base = argv[i]; | |
} else if (arg == "--lora-out") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_lora_out = argv[i]; | |
} else if (arg == "--only-write-lora") { | |
params->only_write_lora = true; | |
} else if (arg == "--norm-rms-eps") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->f_norm_rms_eps = std::stof(argv[i]); | |
params->custom_f_norm_rms_eps = true; | |
} else if (arg == "--rope-freq-base") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->rope_freq_base = std::stof(argv[i]); | |
params->custom_rope_freq_base = true; | |
} else if (arg == "--rope-freq-scale") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->rope_freq_scale = std::stof(argv[i]); | |
params->custom_rope_freq_scale = true; | |
} else if (arg == "--lora-alpha") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->lora_alpha = std::stoi(argv[i]); | |
params->custom_lora_alpha = true; | |
} else if (arg == "--lora-r") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->lora_r = std::stoi(argv[i]); | |
} else if (arg == "--rank-att-norm") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_attention_norm = std::stoi(argv[i]); | |
params->custom_n_rank_attention_norm = true; | |
} else if (arg == "--rank-ffn-norm") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_ffn_norm = std::stoi(argv[i]); | |
params->custom_n_rank_ffn_norm = true; | |
} else if (arg == "--rank-out-norm") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_norm = std::stoi(argv[i]); | |
params->custom_n_rank_norm = true; | |
} else if (arg == "--rank-tok-embd") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_tok_embeddings = std::stoi(argv[i]); | |
params->custom_n_rank_tok_embeddings = true; | |
} else if (arg == "--rank-out") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_output = std::stoi(argv[i]); | |
params->custom_n_rank_output = true; | |
} else if (arg == "--rank-wq") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_wq = std::stoi(argv[i]); | |
params->custom_n_rank_wq = true; | |
} else if (arg == "--rank-wk") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_wk = std::stoi(argv[i]); | |
params->custom_n_rank_wk = true; | |
} else if (arg == "--rank-wv") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_wv = std::stoi(argv[i]); | |
params->custom_n_rank_wv = true; | |
} else if (arg == "--rank-wo") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_wo = std::stoi(argv[i]); | |
params->custom_n_rank_wo = true; | |
} else if (arg == "--rank-w1") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_w1 = std::stoi(argv[i]); | |
params->custom_n_rank_w1 = true; | |
} else if (arg == "--rank-w2") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_w2 = std::stoi(argv[i]); | |
params->custom_n_rank_w2 = true; | |
} else if (arg == "--rank-w3") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->n_rank_w3 = std::stoi(argv[i]); | |
params->custom_n_rank_w3 = true; | |
} else { | |
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
train_print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
} | |
if (invalid_param) { | |
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
train_print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
finish_processing_train_args(¶ms->common); | |
return true; | |
} | |
struct save_train_files_data { | |
const char * fn_checkpoint_out; | |
const char * fn_lora_out; | |
const char * pattern_fn_it; | |
const char * fn_latest; | |
struct my_llama_model * model; | |
struct my_llama_lora * lora; | |
}; | |
static void save_train_files(void * vdata, struct train_state * train) { | |
struct save_train_files_data * data = (struct save_train_files_data *) vdata; | |
int64_t iter = train->opt->iter; | |
if (strlen(data->fn_checkpoint_out) > 0) { | |
save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->model, data->lora, train); | |
save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->model, data->lora, train); | |
} | |
if (strlen(data->fn_lora_out) > 0) { | |
save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->lora); | |
save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->lora); | |
} | |
} | |
static int64_t get_parameter_count(struct my_llama_lora* lora) { | |
int64_t nx = 0; | |
nx += ggml_nelements(lora->tok_embeddings_a); | |
nx += ggml_nelements(lora->tok_embeddings_b); | |
nx += ggml_nelements(lora->norm_a); | |
nx += ggml_nelements(lora->norm_b); | |
nx += ggml_nelements(lora->output_a); | |
nx += ggml_nelements(lora->output_b); | |
for (uint32_t i = 0; i < lora->layers.size(); ++i) { | |
auto & layer = lora->layers[i]; | |
nx += ggml_nelements(layer.attention_norm_a); | |
nx += ggml_nelements(layer.attention_norm_b); | |
nx += ggml_nelements(layer.wq_a); | |
nx += ggml_nelements(layer.wq_b); | |
nx += ggml_nelements(layer.wk_a); | |
nx += ggml_nelements(layer.wk_b); | |
nx += ggml_nelements(layer.wv_a); | |
nx += ggml_nelements(layer.wv_b); | |
nx += ggml_nelements(layer.wo_a); | |
nx += ggml_nelements(layer.wo_b); | |
nx += ggml_nelements(layer.ffn_norm_a); | |
nx += ggml_nelements(layer.ffn_norm_b); | |
nx += ggml_nelements(layer.w1_a); | |
nx += ggml_nelements(layer.w1_b); | |
nx += ggml_nelements(layer.w2_a); | |
nx += ggml_nelements(layer.w2_b); | |
nx += ggml_nelements(layer.w3_a); | |
nx += ggml_nelements(layer.w3_b); | |
} | |
return nx; | |
} | |
int main(int argc, char ** argv) { | |
struct train_params params = get_default_train_params(); | |
if (!train_params_parse(argc, argv, ¶ms)) { | |
return 1; | |
} | |
if (params.common.seed == LLAMA_DEFAULT_SEED) { | |
params.common.seed = time(NULL); | |
} | |
printf("%s: seed: %u\n", __func__, params.common.seed); | |
srand(params.common.seed); | |
struct llama_model_params llama_mparams = llama_model_default_params(); | |
llama_mparams.vocab_only = false; | |
printf("%s: model base = '%s'\n", __func__, params.fn_model_base); | |
struct llama_model * lmodel = llama_load_model_from_file(params.fn_model_base, llama_mparams); | |
struct llama_context_params llama_cparams = llama_context_default_params(); | |
struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_cparams); | |
struct my_llama_model model; | |
init_model(lmodel, &model, params.fn_model_base, params.common.n_ctx); | |
struct my_llama_lora lora; | |
struct train_state * train = init_train_state(); | |
struct ggml_opt_context * opt = train->opt; | |
// set params from command line | |
if (params.custom_f_norm_rms_eps) { | |
model.hparams.f_norm_rms_eps = params.f_norm_rms_eps; | |
} | |
if (params.custom_rope_freq_base) { | |
model.hparams.rope_freq_base = params.rope_freq_base; | |
} | |
if (params.custom_rope_freq_scale) { | |
model.hparams.rope_freq_scale = params.rope_freq_scale; | |
} | |
lora.hparams.lora_r = params.lora_r; | |
lora.hparams.lora_alpha = params.custom_lora_alpha ? params.lora_alpha : params.lora_r; | |
uint32_t n_rank_attention_norm = params.custom_n_rank_attention_norm ? params.n_rank_attention_norm : 1; | |
uint32_t n_rank_wq = params.custom_n_rank_wq ? params.n_rank_wq : params.lora_r; | |
uint32_t n_rank_wk = params.custom_n_rank_wk ? params.n_rank_wk : params.lora_r; | |
uint32_t n_rank_wv = params.custom_n_rank_wv ? params.n_rank_wv : params.lora_r; | |
uint32_t n_rank_wo = params.custom_n_rank_wo ? params.n_rank_wo : params.lora_r; | |
uint32_t n_rank_ffn_norm = params.custom_n_rank_ffn_norm ? params.n_rank_ffn_norm : 1; | |
uint32_t n_rank_w1 = params.custom_n_rank_w1 ? params.n_rank_w1 : params.lora_r; | |
uint32_t n_rank_w2 = params.custom_n_rank_w2 ? params.n_rank_w2 : params.lora_r; | |
uint32_t n_rank_w3 = params.custom_n_rank_w3 ? params.n_rank_w3 : params.lora_r; | |
uint32_t n_rank_tok_embeddings = params.custom_n_rank_tok_embeddings ? params.n_rank_tok_embeddings : params.lora_r; | |
uint32_t n_rank_norm = params.custom_n_rank_norm ? params.n_rank_norm : 1; | |
uint32_t n_rank_output = params.custom_n_rank_output ? params.n_rank_output : params.lora_r; | |
lora.hparams.n_rank_attention_norm = n_rank_attention_norm; | |
lora.hparams.n_rank_wq = n_rank_wq; | |
lora.hparams.n_rank_wk = n_rank_wk; | |
lora.hparams.n_rank_wv = n_rank_wv; | |
lora.hparams.n_rank_wo = n_rank_wo; | |
lora.hparams.n_rank_ffn_norm = n_rank_ffn_norm; | |
lora.hparams.n_rank_w1 = n_rank_w1; | |
lora.hparams.n_rank_w2 = n_rank_w2; | |
lora.hparams.n_rank_w3 = n_rank_w3; | |
lora.hparams.n_rank_tok_embeddings = n_rank_tok_embeddings; | |
lora.hparams.n_rank_norm = n_rank_norm; | |
lora.hparams.n_rank_output = n_rank_output; | |
// set opt params from command line | |
opt->params = ggml_opt_default_params(GGML_OPT_ADAM); | |
opt->params.print_forward_graph = false; | |
opt->params.print_backward_graph = false; | |
opt->params.n_threads = params.common.n_threads; | |
opt->params.past = params.common.opt_past; | |
opt->params.delta = params.common.opt_delta; | |
opt->params.max_no_improvement = params.common.opt_max_no_improvement; | |
opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation; | |
opt->params.adam.n_iter = params.common.adam_n_iter; | |
opt->params.adam.sched = 1.0f; | |
opt->params.adam.alpha = params.common.adam_alpha; | |
opt->params.adam.decay = params.common.adam_decay; | |
opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim; | |
opt->params.adam.beta1 = params.common.adam_beta1; | |
opt->params.adam.beta2 = params.common.adam_beta2; | |
opt->params.adam.gclip = params.common.adam_gclip; | |
opt->params.adam.eps_f = params.common.adam_eps_f; | |
ggml_allocr * alloc = NULL; | |
printf("%s: init model\n", __func__); | |
bool existed = load_checkpoint_lora_file(params.common.fn_checkpoint_in, &model, &lora, train); | |
if (existed) { | |
// overwrite last n_ctx with user provided n_ctx | |
if (params.common.custom_n_ctx) { | |
model.hparams.n_ctx = params.common.n_ctx; | |
} | |
const bool opt_param_count_changed = ( | |
(lora.hparams.n_rank_attention_norm != n_rank_attention_norm) | |
|| (lora.hparams.n_rank_wq != n_rank_wq) | |
|| (lora.hparams.n_rank_wk != n_rank_wk) | |
|| (lora.hparams.n_rank_wv != n_rank_wv) | |
|| (lora.hparams.n_rank_wo != n_rank_wo) | |
|| (lora.hparams.n_rank_ffn_norm != n_rank_ffn_norm) | |
|| (lora.hparams.n_rank_w1 != n_rank_w1) | |
|| (lora.hparams.n_rank_w2 != n_rank_w2) | |
|| (lora.hparams.n_rank_w3 != n_rank_w3) | |
|| (lora.hparams.n_rank_tok_embeddings != n_rank_tok_embeddings) | |
|| (lora.hparams.n_rank_norm != n_rank_norm) | |
|| (lora.hparams.n_rank_output != n_rank_output) | |
); | |
const bool opt_past_changed = opt->params.past != params.common.opt_past; | |
if (opt_param_count_changed) { | |
print_lora_params(&lora.hparams); | |
die("Provided rank differs from checkpoint file. To use different rank start finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting."); | |
// need to discard previous optimizer gradient statistics and opt_init with new shapes | |
// TODO | |
} | |
if (opt_past_changed) { | |
die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting"); | |
// need to discard previous optimizer past function value statistics and opt_init with new shapes | |
// TODO | |
} | |
} else { // existed == false | |
init_lora(&model, &lora); | |
randomize_lora(&lora, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f); | |
if (!params.only_write_lora) { | |
ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&lora)); | |
} | |
} | |
opt->iter = train->train_its; | |
print_params(&model.hparams); | |
print_lora_params(&lora.hparams); | |
printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its); | |
printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples); | |
printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens); | |
printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs); | |
printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + lora.data.size()), (float) (ggml_used_mem(lora.ctx) + lora.data.size()) / (1024.0f*1024.0f)); | |
if (params.only_write_lora) { | |
save_train_files_data save_data; | |
save_data.fn_checkpoint_out = ""; | |
save_data.fn_lora_out = params.fn_lora_out; | |
save_data.pattern_fn_it = params.common.pattern_fn_it; | |
save_data.fn_latest = params.common.fn_latest; | |
save_data.model = &model; | |
save_data.lora = &lora; | |
save_train_files(&save_data, train); | |
free_train_state(train); | |
ggml_free(lora.ctx); | |
llama_free(lctx); | |
llama_free_model(lmodel); | |
return 0; | |
} | |
printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f)); | |
printf("%s: opt iter %d\n", __func__, opt->iter); | |
int n_tokens = model.hparams.n_ctx; | |
int n_vocab = model.hparams.n_vocab; | |
int n_batch = params.common.n_batch; | |
std::vector<uint8_t> mem_input_data; | |
std::vector<uint8_t> mem_compute_data; | |
// context for input tensors without their data | |
struct ggml_init_params ctx_input_params = { | |
ggml_tensor_overhead() * 2, // mem_size | |
NULL, // mem_buffer | |
true, // no_alloc | |
}; | |
struct ggml_context * ctx_input = ggml_init(ctx_input_params); | |
// the input tensors | |
struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch); | |
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch); | |
// measure required memory for input tensors | |
alloc = ggml_allocr_new_measure(tensor_alignment); | |
ggml_allocr_alloc(alloc, tokens_input); | |
ggml_allocr_alloc(alloc, target_probs); | |
size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment; | |
ggml_allocr_free(alloc); | |
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f)); | |
// allocate input tensors | |
mem_input_data.resize(max_input_size); | |
alloc = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment); | |
ggml_allocr_alloc(alloc, tokens_input); | |
ggml_allocr_alloc(alloc, target_probs); | |
ggml_allocr_free(alloc); | |
// context for compute tensors without their data | |
size_t estimated_compute_size_wo_data = ( | |
ggml_tensor_overhead()*GGML_MAX_NODES*2 | |
+ (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*( | |
params.common.use_checkpointing ? 3 : 2 | |
) | |
); | |
struct ggml_init_params ctx_compute_params = { | |
estimated_compute_size_wo_data, // mem_size | |
NULL, // mem_buffer | |
true, // no_alloc | |
}; | |
struct ggml_context * ctx_compute = NULL; | |
struct ggml_tensor * loss = NULL; | |
struct ggml_tensor * logits = NULL; | |
struct ggml_cgraph * gf = NULL; | |
struct ggml_cgraph * gb = NULL; | |
struct ggml_cgraph * gb_tmp = NULL; | |
// measure required memory for compute tensors | |
size_t best_compute_size = SIZE_MAX; | |
enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT; | |
// find best evaluation order | |
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) { | |
ctx_compute = ggml_init(ctx_compute_params); | |
alloc = ggml_allocr_new_measure(tensor_alignment); | |
gf = ggml_new_graph(ctx_compute); | |
gf->order = (enum ggml_cgraph_eval_order) order; | |
gb = ggml_new_graph(ctx_compute); | |
gb_tmp = params.common.use_checkpointing | |
? ggml_new_graph(ctx_compute) | |
: NULL; | |
loss = llama_build_lora_finetune_graphs( | |
&model, &lora, alloc, ctx_compute, | |
gf, gb, gb_tmp, | |
&logits, tokens_input, target_probs, | |
n_tokens, n_batch, | |
params.common.use_flash, | |
params.common.use_checkpointing | |
); | |
size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment; | |
if (max_compute_size < best_compute_size) { | |
best_compute_size = max_compute_size; | |
best_order = gf->order; | |
} | |
ggml_allocr_free(alloc); | |
ggml_free(ctx_compute); | |
} | |
size_t max_compute_size = best_compute_size; | |
printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f)); | |
printf("%s: evaluation order = %s\n", __func__, | |
(best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" : | |
(best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" : | |
"invalid"); | |
// allocate compute tensors | |
mem_compute_data.resize(max_compute_size); | |
ctx_compute = ggml_init(ctx_compute_params); | |
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment); | |
gf = ggml_new_graph(ctx_compute); | |
gf->order = best_order; | |
gb = ggml_new_graph(ctx_compute); | |
gb_tmp = params.common.use_checkpointing | |
? ggml_new_graph(ctx_compute) | |
: NULL; | |
loss = llama_build_lora_finetune_graphs( | |
&model, &lora, alloc, ctx_compute, | |
gf, gb, gb_tmp, | |
&logits, tokens_input, target_probs, | |
n_tokens, n_batch, | |
params.common.use_flash, | |
params.common.use_checkpointing | |
); | |
ggml_allocr_free(alloc); | |
// tokenize data | |
std::vector<llama_token> train_tokens; | |
std::vector<size_t> train_samples_begin; | |
std::vector<size_t> train_samples_size; | |
printf("%s: tokenize training data\n", __func__); | |
tokenize_file(lctx, | |
params.common.fn_train_data, | |
params.common.sample_start, | |
params.common.include_sample_start, | |
params.common.overlapping_samples, | |
n_tokens, | |
train_tokens, | |
train_samples_begin, | |
train_samples_size); | |
GGML_ASSERT(train_samples_begin.size() == train_samples_size.size()); | |
printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size()); | |
std::vector<size_t> token_noccurs; | |
token_noccurs.resize(model.hparams.n_vocab, 0); | |
for (unsigned int i = 0; i < train_tokens.size(); ++i) { | |
++token_noccurs[train_tokens[i]]; | |
} | |
int n_unique_tokens = 0; | |
for (unsigned int i = 0; i < token_noccurs.size(); ++i) { | |
if (token_noccurs[i] == 0) continue; | |
++n_unique_tokens; | |
} | |
printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens); | |
size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size()); | |
const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size()); | |
if (changed_train_data) { | |
printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__); | |
} | |
if (params.common.force_reshuffle) { | |
printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__); | |
} | |
if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) { | |
train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed); | |
train->shuffle_sample_count = train_samples_size.size(); | |
train->shuffle_next_sample = 0; | |
train->shuffle_samples_hash = shuffle_samples_hash; | |
} | |
std::vector<size_t> train_shuffled_samples_offs; | |
std::vector<size_t> train_shuffled_samples_begin; | |
std::vector<size_t> train_shuffled_samples_size; | |
train_shuffled_samples_offs.resize(train_samples_begin.size()); | |
train_shuffled_samples_begin.resize(train_samples_begin.size()); | |
train_shuffled_samples_size.resize(train_samples_size.size()); | |
train->shuffle_rng_state_next = shuffle_samples( | |
train->shuffle_rng_state_current, | |
train_shuffled_samples_offs.data(), | |
train_shuffled_samples_begin.data(), | |
train_shuffled_samples_size.data(), | |
train_samples_begin.data(), | |
train_samples_size.data(), | |
train_samples_size.size()); | |
printf("%s: begin training\n", __func__); | |
save_train_files_data save_data; | |
save_data.fn_checkpoint_out = params.common.fn_checkpoint_out; | |
save_data.fn_lora_out = params.fn_lora_out; | |
save_data.pattern_fn_it = params.common.pattern_fn_it; | |
save_data.fn_latest = params.common.fn_latest; | |
save_data.model = &model; | |
save_data.lora = &lora; | |
struct train_opt_callback_data opt_cb_data; | |
opt_cb_data.params = ¶ms.common; | |
opt_cb_data.train = train; | |
opt_cb_data.save_cb = &save_train_files; | |
opt_cb_data.save_data = &save_data; | |
opt_cb_data.lctx = lctx; | |
opt_cb_data.last_save_iter = opt->iter; | |
opt_cb_data.tokens_data = train_tokens.data(); | |
opt_cb_data.tokens_size = train_tokens.size(); | |
opt_cb_data.samples_begin = train_samples_begin.data(); | |
opt_cb_data.samples_size = train_samples_size.data(); | |
opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data(); | |
opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data(); | |
opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data(); | |
opt_cb_data.samples_count = train_samples_size.size(); | |
opt_cb_data.tokens_input = tokens_input; | |
opt_cb_data.target_probs = target_probs; | |
opt_cb_data.first_iter = opt->iter; | |
opt_cb_data.first_epoch = train->train_epochs; | |
opt_cb_data.iter_at_last_epoch = -1; | |
opt_cb_data.last_time = ggml_time_ms(); | |
opt_cb_data.millis_per_iter = 0.0; | |
// measure required memory for work buffer | |
size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE; | |
printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f)); | |
// context for work buffer | |
struct ggml_init_params ctx_work_params = { | |
max_work_size, // mem_size | |
NULL, // mem_buffer | |
false, // no_alloc | |
}; | |
struct ggml_context * ctx_work = ggml_init(ctx_work_params); | |
int64_t t0 = ggml_time_ms(); | |
ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data); | |
ggml_free(ctx_work); | |
ggml_free(ctx_compute); | |
ggml_free(ctx_input); | |
int64_t t1 = ggml_time_ms(); | |
printf("%s: total training time: ", __func__); | |
print_duration((double) (t1 - t0)); | |
printf("\n"); | |
int new_iters = opt->iter - opt_cb_data.last_save_iter; | |
if (new_iters > 0) { | |
train->train_its += new_iters; | |
train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens; | |
save_train_files(&save_data, train); | |
opt_cb_data.last_save_iter = opt->iter; | |
} | |
ggml_free(opt->ctx); | |
free_train_state(train); | |
ggml_free(lora.ctx); | |
llama_free(lctx); | |
llama_free_model(lmodel); | |
return 0; | |
} | |