Spaces:
Build error
Build error
// utils | |
static uint64_t get_time_ns() { | |
using clock = std::chrono::high_resolution_clock; | |
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count(); | |
} | |
template<class T> | |
static std::string join(const std::vector<T> & values, const std::string & delim) { | |
std::ostringstream str; | |
for (size_t i = 0; i < values.size(); i++) { | |
str << values[i]; | |
if (i < values.size() - 1) { | |
str << delim; | |
} | |
} | |
return str.str(); | |
} | |
template<class T> | |
static std::vector<T> split(const std::string & str, char delim) { | |
std::vector<T> values; | |
std::istringstream str_stream(str); | |
std::string token; | |
while (std::getline(str_stream, token, delim)) { | |
T value; | |
std::istringstream token_stream(token); | |
token_stream >> value; | |
values.push_back(value); | |
} | |
return values; | |
} | |
template<typename T> | |
static T avg(const std::vector<T> & v) { | |
if (v.empty()) { | |
return 0; | |
} | |
T sum = std::accumulate(v.begin(), v.end(), T(0)); | |
return sum / (T)v.size(); | |
} | |
template<typename T> | |
static T stdev(const std::vector<T> & v) { | |
if (v.size() <= 1) { | |
return 0; | |
} | |
T mean = avg(v); | |
T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0)); | |
T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1)); | |
return stdev; | |
} | |
static std::string get_cpu_info() { | |
std::string id; | |
FILE * f = fopen("/proc/cpuinfo", "r"); | |
if (f) { | |
char buf[1024]; | |
while (fgets(buf, sizeof(buf), f)) { | |
if (strncmp(buf, "model name", 10) == 0) { | |
char * p = strchr(buf, ':'); | |
if (p) { | |
p++; | |
while (std::isspace(*p)) { | |
p++; | |
} | |
while (std::isspace(p[strlen(p) - 1])) { | |
p[strlen(p) - 1] = '\0'; | |
} | |
id = p; | |
break; | |
} | |
} | |
} | |
} | |
// TODO: other platforms | |
return id; | |
} | |
static std::string get_gpu_info() { | |
std::string id; | |
int count = ggml_cuda_get_device_count(); | |
for (int i = 0; i < count; i++) { | |
char buf[128]; | |
ggml_cuda_get_device_description(i, buf, sizeof(buf)); | |
id += buf; | |
if (i < count - 1) { | |
id += "/"; | |
} | |
} | |
// TODO: other backends | |
return id; | |
} | |
// command line params | |
enum output_formats {CSV, JSON, MARKDOWN, SQL}; | |
struct cmd_params { | |
std::vector<std::string> model; | |
std::vector<int> n_prompt; | |
std::vector<int> n_gen; | |
std::vector<int> n_batch; | |
std::vector<bool> f32_kv; | |
std::vector<int> n_threads; | |
std::vector<int> n_gpu_layers; | |
std::vector<int> main_gpu; | |
std::vector<bool> mul_mat_q; | |
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split; | |
int reps; | |
bool verbose; | |
output_formats output_format; | |
}; | |
static const cmd_params cmd_params_defaults = { | |
/* model */ {"models/7B/ggml-model-q4_0.gguf"}, | |
/* n_prompt */ {512}, | |
/* n_gen */ {128}, | |
/* n_batch */ {512}, | |
/* f32_kv */ {false}, | |
/* n_threads */ {get_num_physical_cores()}, | |
/* n_gpu_layers */ {99}, | |
/* main_gpu */ {0}, | |
/* mul_mat_q */ {true}, | |
/* tensor_split */ {{}}, | |
/* reps */ 5, | |
/* verbose */ false, | |
/* output_format */ MARKDOWN | |
}; | |
static void print_usage(int /* argc */, char ** argv) { | |
printf("usage: %s [options]\n", argv[0]); | |
printf("\n"); | |
printf("options:\n"); | |
printf(" -h, --help\n"); | |
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str()); | |
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str()); | |
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str()); | |
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str()); | |
printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str()); | |
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str()); | |
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); | |
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); | |
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str()); | |
printf(" -ts, --tensor_split <ts0/ts1/..> \n"); | |
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps); | |
printf(" -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql"); | |
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0"); | |
printf("\n"); | |
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n"); | |
} | |
static cmd_params parse_cmd_params(int argc, char ** argv) { | |
cmd_params params; | |
std::string arg; | |
bool invalid_param = false; | |
const std::string arg_prefix = "--"; | |
const char split_delim = ','; | |
params.verbose = cmd_params_defaults.verbose; | |
params.output_format = cmd_params_defaults.output_format; | |
params.reps = cmd_params_defaults.reps; | |
for (int i = 1; i < argc; i++) { | |
arg = argv[i]; | |
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
std::replace(arg.begin(), arg.end(), '_', '-'); | |
} | |
if (arg == "-h" || arg == "--help") { | |
print_usage(argc, argv); | |
exit(0); | |
} else if (arg == "-m" || arg == "--model") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
auto p = split<std::string>(argv[i], split_delim); | |
params.model.insert(params.model.end(), p.begin(), p.end()); | |
} else if (arg == "-p" || arg == "--n-prompt") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
auto p = split<int>(argv[i], split_delim); | |
params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end()); | |
} else if (arg == "-n" || arg == "--n-gen") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
auto p = split<int>(argv[i], split_delim); | |
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end()); | |
} else if (arg == "-b" || arg == "--batch-size") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
auto p = split<int>(argv[i], split_delim); | |
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end()); | |
} else if (arg == "--memory-f32") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
auto p = split<int>(argv[i], split_delim); | |
params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end()); | |
} else if (arg == "-t" || arg == "--threads") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
auto p = split<int>(argv[i], split_delim); | |
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end()); | |
} else if (arg == "-ngl" || arg == "--n-gpu-layers") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
auto p = split<int>(argv[i], split_delim); | |
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end()); | |
} else if (arg == "-mg" || arg == "--main-gpu") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.main_gpu = split<int>(argv[i], split_delim); | |
} else if (arg == "-mmq" || arg == "--mul-mat-q") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
auto p = split<bool>(argv[i], split_delim); | |
params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end()); | |
} else if (arg == "-ts" || arg == "--tensor-split") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
for (auto ts : split<std::string>(argv[i], split_delim)) { | |
// split string by ; and / | |
const std::regex regex{R"([;/]+)"}; | |
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1}; | |
std::vector<std::string> split_arg{it, {}}; | |
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); | |
std::array<float, LLAMA_MAX_DEVICES> tensor_split; | |
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) { | |
if (i < split_arg.size()) { | |
tensor_split[i] = std::stof(split_arg[i]); | |
} else { | |
tensor_split[i] = 0.0f; | |
} | |
} | |
params.tensor_split.push_back(tensor_split); | |
} | |
} else if (arg == "-r" || arg == "--repetitions") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params.reps = std::stoi(argv[i]); | |
} else if (arg == "-o" || arg == "--output") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
if (argv[i] == std::string("csv")) { | |
params.output_format = CSV; | |
} else if (argv[i] == std::string("json")) { | |
params.output_format = JSON; | |
} else if (argv[i] == std::string("md")) { | |
params.output_format = MARKDOWN; | |
} else if (argv[i] == std::string("sql")) { | |
params.output_format = SQL; | |
} else { | |
invalid_param = true; | |
break; | |
} | |
} else if (arg == "-v" || arg == "--verbose") { | |
params.verbose = true; | |
} else { | |
invalid_param = true; | |
break; | |
} | |
} | |
if (invalid_param) { | |
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
print_usage(argc, argv); | |
exit(1); | |
} | |
// set defaults | |
if (params.model.empty()) { params.model = cmd_params_defaults.model; } | |
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; } | |
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; } | |
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; } | |
if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; } | |
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; } | |
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } | |
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; } | |
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; } | |
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; } | |
return params; | |
} | |
struct cmd_params_instance { | |
std::string model; | |
int n_prompt; | |
int n_gen; | |
int n_batch; | |
bool f32_kv; | |
int n_threads; | |
int n_gpu_layers; | |
int main_gpu; | |
bool mul_mat_q; | |
std::array<float, LLAMA_MAX_DEVICES> tensor_split; | |
llama_model_params to_llama_mparams() const { | |
llama_model_params mparams = llama_model_default_params(); | |
mparams.n_gpu_layers = n_gpu_layers; | |
mparams.main_gpu = main_gpu; | |
mparams.tensor_split = tensor_split.data(); | |
return mparams; | |
} | |
bool equal_mparams(const cmd_params_instance & other) const { | |
return model == other.model && | |
n_gpu_layers == other.n_gpu_layers && | |
main_gpu == other.main_gpu && | |
tensor_split == other.tensor_split; | |
} | |
llama_context_params to_llama_cparams() const { | |
llama_context_params cparams = llama_context_default_params(); | |
cparams.n_ctx = n_prompt + n_gen; | |
cparams.n_batch = n_batch; | |
cparams.f16_kv = !f32_kv; | |
cparams.mul_mat_q = mul_mat_q; | |
return cparams; | |
} | |
}; | |
static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) { | |
std::vector<cmd_params_instance> instances; | |
for (const auto & m : params.model) | |
for (const auto & nl : params.n_gpu_layers) | |
for (const auto & mg : params.main_gpu) | |
for (const auto & ts : params.tensor_split) | |
for (const auto & nb : params.n_batch) | |
for (const auto & fk : params.f32_kv) | |
for (const auto & mmq : params.mul_mat_q) | |
for (const auto & nt : params.n_threads) { | |
cmd_params_instance instance = { | |
/* .model = */ m, | |
/* .n_prompt = */ n_prompt, | |
/* .n_gen = */ n_gen, | |
/* .n_batch = */ nb, | |
/* .f32_kv = */ fk, | |
/* .n_threads = */ nt, | |
/* .n_gpu_layers = */ nl, | |
/* .main_gpu = */ mg, | |
/* .mul_mat_q = */ mmq, | |
/* .tensor_split = */ ts, | |
}; | |
instances.push_back(instance); | |
} | |
return instances; | |
} | |
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) { | |
std::vector<cmd_params_instance> instances; | |
// this ordering minimizes the number of times that each model needs to be reloaded | |
for (const auto & m : params.model) | |
for (const auto & nl : params.n_gpu_layers) | |
for (const auto & mg : params.main_gpu) | |
for (const auto & ts : params.tensor_split) | |
for (const auto & nb : params.n_batch) | |
for (const auto & fk : params.f32_kv) | |
for (const auto & mmq : params.mul_mat_q) | |
for (const auto & nt : params.n_threads) { | |
for (const auto & n_prompt : params.n_prompt) { | |
if (n_prompt == 0) { | |
continue; | |
} | |
cmd_params_instance instance = { | |
/* .model = */ m, | |
/* .n_prompt = */ n_prompt, | |
/* .n_gen = */ 0, | |
/* .n_batch = */ nb, | |
/* .f32_kv = */ fk, | |
/* .n_threads = */ nt, | |
/* .n_gpu_layers = */ nl, | |
/* .main_gpu = */ mg, | |
/* .mul_mat_q = */ mmq, | |
/* .tensor_split = */ ts, | |
}; | |
instances.push_back(instance); | |
} | |
for (const auto & n_gen : params.n_gen) { | |
if (n_gen == 0) { | |
continue; | |
} | |
cmd_params_instance instance = { | |
/* .model = */ m, | |
/* .n_prompt = */ 0, | |
/* .n_gen = */ n_gen, | |
/* .n_batch = */ nb, | |
/* .f32_kv = */ fk, | |
/* .n_threads = */ nt, | |
/* .n_gpu_layers = */ nl, | |
/* .main_gpu = */ mg, | |
/* .mul_mat_q = */ mmq, | |
/* .tensor_split = */ ts, | |
}; | |
instances.push_back(instance); | |
} | |
} | |
// this ordering separates the prompt and generation tests | |
for (const auto & n_prompt : params.n_prompt) { | |
if (n_prompt == 0) { | |
continue; | |
} | |
auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt); | |
instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end()); | |
} | |
for (const auto & n_gen : params.n_gen) { | |
if (n_gen == 0) { | |
continue; | |
} | |
auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0); | |
instances.insert(instances.end(), instances_gen.begin(), instances_gen.end()); | |
} | |
return instances; | |
} | |
struct test { | |
static const std::string build_commit; | |
static const int build_number; | |
static const bool cuda; | |
static const bool opencl; | |
static const bool metal; | |
static const bool gpu_blas; | |
static const bool blas; | |
static const std::string cpu_info; | |
static const std::string gpu_info; | |
std::string model_filename; | |
std::string model_type; | |
uint64_t model_size; | |
uint64_t model_n_params; | |
int n_batch; | |
int n_threads; | |
bool f32_kv; | |
int n_gpu_layers; | |
int main_gpu; | |
bool mul_mat_q; | |
std::array<float, LLAMA_MAX_DEVICES> tensor_split; | |
int n_prompt; | |
int n_gen; | |
std::string test_time; | |
std::vector<uint64_t> samples_ns; | |
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) { | |
model_filename = inst.model; | |
char buf[128]; | |
llama_model_desc(lmodel, buf, sizeof(buf)); | |
model_type = buf; | |
model_size = llama_model_size(lmodel); | |
model_n_params = llama_model_n_params(lmodel); | |
n_batch = inst.n_batch; | |
n_threads = inst.n_threads; | |
f32_kv = inst.f32_kv; | |
n_gpu_layers = inst.n_gpu_layers; | |
main_gpu = inst.main_gpu; | |
mul_mat_q = inst.mul_mat_q; | |
tensor_split = inst.tensor_split; | |
n_prompt = inst.n_prompt; | |
n_gen = inst.n_gen; | |
// RFC 3339 date-time format | |
time_t t = time(NULL); | |
std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t)); | |
test_time = buf; | |
(void) ctx; | |
} | |
uint64_t avg_ns() const { | |
return ::avg(samples_ns); | |
} | |
uint64_t stdev_ns() const { | |
return ::stdev(samples_ns); | |
} | |
std::vector<double> get_ts() const { | |
int n_tokens = n_prompt + n_gen; | |
std::vector<double> ts; | |
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; }); | |
return ts; | |
} | |
double avg_ts() const { | |
return ::avg(get_ts()); | |
} | |
double stdev_ts() const { | |
return ::stdev(get_ts()); | |
} | |
static std::string get_backend() { | |
if (cuda) { | |
return GGML_CUDA_NAME; | |
} | |
if (opencl) { | |
return "OpenCL"; | |
} | |
if (metal) { | |
return "Metal"; | |
} | |
if (gpu_blas) { | |
return "GPU BLAS"; | |
} | |
if (blas) { | |
return "BLAS"; | |
} | |
return "CPU"; | |
} | |
static const std::vector<std::string> & get_fields() { | |
static const std::vector<std::string> fields = { | |
"build_commit", "build_number", | |
"cuda", "opencl", "metal", "gpu_blas", "blas", | |
"cpu_info", "gpu_info", | |
"model_filename", "model_type", "model_size", "model_n_params", | |
"n_batch", "n_threads", "f16_kv", | |
"n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split", | |
"n_prompt", "n_gen", "test_time", | |
"avg_ns", "stddev_ns", | |
"avg_ts", "stddev_ts" | |
}; | |
return fields; | |
} | |
enum field_type {STRING, BOOL, INT, FLOAT}; | |
static field_type get_field_type(const std::string & field) { | |
if (field == "build_number" || field == "n_batch" || field == "n_threads" || | |
field == "model_size" || field == "model_n_params" || | |
field == "n_gpu_layers" || field == "main_gpu" || | |
field == "n_prompt" || field == "n_gen" || | |
field == "avg_ns" || field == "stddev_ns") { | |
return INT; | |
} | |
if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" || | |
field == "f16_kv" || field == "mul_mat_q") { | |
return BOOL; | |
} | |
if (field == "avg_ts" || field == "stddev_ts") { | |
return FLOAT; | |
} | |
return STRING; | |
} | |
std::vector<std::string> get_values() const { | |
std::string tensor_split_str; | |
int max_nonzero = 0; | |
for (int i = 0; i < LLAMA_MAX_DEVICES; i++) { | |
if (tensor_split[i] > 0) { | |
max_nonzero = i; | |
} | |
} | |
for (int i = 0; i <= max_nonzero; i++) { | |
char buf[32]; | |
snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]); | |
tensor_split_str += buf; | |
if (i < max_nonzero) { | |
tensor_split_str += "/"; | |
} | |
} | |
std::vector<std::string> values = { | |
build_commit, std::to_string(build_number), | |
std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas), | |
cpu_info, gpu_info, | |
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params), | |
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv), | |
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str, | |
std::to_string(n_prompt), std::to_string(n_gen), test_time, | |
std::to_string(avg_ns()), std::to_string(stdev_ns()), | |
std::to_string(avg_ts()), std::to_string(stdev_ts()) | |
}; | |
return values; | |
} | |
std::map<std::string, std::string> get_map() const { | |
std::map<std::string, std::string> map; | |
auto fields = get_fields(); | |
auto values = get_values(); | |
std::transform(fields.begin(), fields.end(), values.begin(), | |
std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>); | |
return map; | |
} | |
}; | |
const std::string test::build_commit = BUILD_COMMIT; | |
const int test::build_number = BUILD_NUMBER; | |
const bool test::cuda = !!ggml_cpu_has_cublas(); | |
const bool test::opencl = !!ggml_cpu_has_clblast(); | |
const bool test::metal = !!ggml_cpu_has_metal(); | |
const bool test::gpu_blas = !!ggml_cpu_has_gpublas(); | |
const bool test::blas = !!ggml_cpu_has_blas(); | |
const std::string test::cpu_info = get_cpu_info(); | |
const std::string test::gpu_info = get_gpu_info(); | |
struct printer { | |
virtual ~printer() {} | |
FILE * fout; | |
virtual void print_header(const cmd_params & params) { (void) params; } | |
virtual void print_test(const test & t) = 0; | |
virtual void print_footer() { } | |
}; | |
struct csv_printer : public printer { | |
static std::string escape_csv(const std::string & field) { | |
std::string escaped = "\""; | |
for (auto c : field) { | |
if (c == '"') { | |
escaped += "\""; | |
} | |
escaped += c; | |
} | |
escaped += "\""; | |
return escaped; | |
} | |
void print_header(const cmd_params & params) override { | |
std::vector<std::string> fields = test::get_fields(); | |
fprintf(fout, "%s\n", join(fields, ",").c_str()); | |
(void) params; | |
} | |
void print_test(const test & t) override { | |
std::vector<std::string> values = t.get_values(); | |
std::transform(values.begin(), values.end(), values.begin(), escape_csv); | |
fprintf(fout, "%s\n", join(values, ",").c_str()); | |
} | |
}; | |
struct json_printer : public printer { | |
bool first = true; | |
static std::string escape_json(const std::string & value) { | |
std::string escaped; | |
for (auto c : value) { | |
if (c == '"') { | |
escaped += "\\\""; | |
} else if (c == '\\') { | |
escaped += "\\\\"; | |
} else if (c <= 0x1f) { | |
char buf[8]; | |
snprintf(buf, sizeof(buf), "\\u%04x", c); | |
escaped += buf; | |
} else { | |
escaped += c; | |
} | |
} | |
return escaped; | |
} | |
static std::string format_value(const std::string & field, const std::string & value) { | |
switch (test::get_field_type(field)) { | |
case test::STRING: | |
return "\"" + escape_json(value) + "\""; | |
case test::BOOL: | |
return value == "0" ? "false" : "true"; | |
default: | |
return value; | |
} | |
} | |
void print_header(const cmd_params & params) override { | |
fprintf(fout, "[\n"); | |
(void) params; | |
} | |
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) { | |
assert(fields.size() == values.size()); | |
for (size_t i = 0; i < fields.size(); i++) { | |
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str()); | |
} | |
} | |
void print_test(const test & t) override { | |
if (first) { | |
first = false; | |
} else { | |
fprintf(fout, ",\n"); | |
} | |
fprintf(fout, " {\n"); | |
print_fields(test::get_fields(), t.get_values()); | |
fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str()); | |
fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str()); | |
fprintf(fout, " }"); | |
fflush(fout); | |
} | |
void print_footer() override { | |
fprintf(fout, "\n]\n"); | |
} | |
}; | |
struct markdown_printer : public printer { | |
std::vector<std::string> fields; | |
static int get_field_width(const std::string & field) { | |
if (field == "model") { | |
return -30; | |
} | |
if (field == "t/s") { | |
return 16; | |
} | |
if (field == "size" || field == "params") { | |
return 10; | |
} | |
if (field == "n_gpu_layers") { | |
return 3; | |
} | |
int width = std::max((int)field.length(), 10); | |
if (test::get_field_type(field) == test::STRING) { | |
return -width; | |
} | |
return width; | |
} | |
static std::string get_field_display_name(const std::string & field) { | |
if (field == "n_gpu_layers") { | |
return "ngl"; | |
} | |
if (field == "n_threads") { | |
return "threads"; | |
} | |
if (field == "mul_mat_q") { | |
return "mmq"; | |
} | |
if (field == "tensor_split") { | |
return "ts"; | |
} | |
return field; | |
} | |
void print_header(const cmd_params & params) override { | |
// select fields to print | |
fields.push_back("model"); | |
fields.push_back("size"); | |
fields.push_back("params"); | |
fields.push_back("backend"); | |
bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS"; | |
if (!is_cpu_backend) { | |
fields.push_back("n_gpu_layers"); | |
} | |
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) { | |
fields.push_back("n_threads"); | |
} | |
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) { | |
fields.push_back("n_batch"); | |
} | |
if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) { | |
fields.push_back("f16_kv"); | |
} | |
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) { | |
fields.push_back("main_gpu"); | |
} | |
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) { | |
fields.push_back("mul_mat_q"); | |
} | |
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) { | |
fields.push_back("tensor_split"); | |
} | |
fields.push_back("test"); | |
fields.push_back("t/s"); | |
fprintf(fout, "|"); | |
for (const auto & field : fields) { | |
fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str()); | |
} | |
fprintf(fout, "\n"); | |
fprintf(fout, "|"); | |
for (const auto & field : fields) { | |
int width = get_field_width(field); | |
fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-"); | |
} | |
fprintf(fout, "\n"); | |
} | |
void print_test(const test & t) override { | |
std::map<std::string, std::string> vmap = t.get_map(); | |
fprintf(fout, "|"); | |
for (const auto & field : fields) { | |
std::string value; | |
char buf[128]; | |
if (field == "model") { | |
value = t.model_type; | |
} else if (field == "size") { | |
if (t.model_size < 1024*1024*1024) { | |
snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0); | |
} else { | |
snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0); | |
} | |
value = buf; | |
} else if (field == "params") { | |
if (t.model_n_params < 1000*1000*1000) { | |
snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6); | |
} else { | |
snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9); | |
} | |
value = buf; | |
} else if (field == "backend") { | |
value = test::get_backend(); | |
} else if (field == "test") { | |
if (t.n_prompt > 0 && t.n_gen == 0) { | |
snprintf(buf, sizeof(buf), "pp %d", t.n_prompt); | |
} else if (t.n_gen > 0 && t.n_prompt == 0) { | |
snprintf(buf, sizeof(buf), "tg %d", t.n_gen); | |
} else { | |
assert(false); | |
exit(1); | |
} | |
value = buf; | |
} else if (field == "t/s") { | |
snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts()); | |
value = buf; | |
} else if (vmap.find(field) != vmap.end()) { | |
value = vmap.at(field); | |
} else { | |
assert(false); | |
exit(1); | |
} | |
int width = get_field_width(field); | |
if (field == "t/s") { | |
// HACK: the utf-8 character is 2 bytes | |
width += 1; | |
} | |
fprintf(fout, " %*s |", width, value.c_str()); | |
} | |
fprintf(fout, "\n"); | |
} | |
void print_footer() override { | |
fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number); | |
} | |
}; | |
struct sql_printer : public printer { | |
static std::string get_sql_field_type(const std::string & field) { | |
switch (test::get_field_type(field)) { | |
case test::STRING: | |
return "TEXT"; | |
case test::BOOL: | |
case test::INT: | |
return "INTEGER"; | |
case test::FLOAT: | |
return "REAL"; | |
default: | |
assert(false); | |
exit(1); | |
} | |
} | |
void print_header(const cmd_params & params) override { | |
std::vector<std::string> fields = test::get_fields(); | |
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n"); | |
for (size_t i = 0; i < fields.size(); i++) { | |
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : ""); | |
} | |
fprintf(fout, ");\n"); | |
fprintf(fout, "\n"); | |
(void) params; | |
} | |
void print_test(const test & t) override { | |
fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str()); | |
fprintf(fout, "VALUES ("); | |
std::vector<std::string> values = t.get_values(); | |
for (size_t i = 0; i < values.size(); i++) { | |
fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : ""); | |
} | |
fprintf(fout, ");\n"); | |
} | |
}; | |
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) { | |
std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx)); | |
int n_processed = 0; | |
llama_set_n_threads(ctx, n_threads, n_threads); | |
while (n_processed < n_prompt) { | |
int n_tokens = std::min(n_prompt - n_processed, n_batch); | |
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0)); | |
n_processed += n_tokens; | |
} | |
} | |
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) { | |
llama_token token = llama_token_bos(ctx); | |
llama_set_n_threads(ctx, n_threads, n_threads); | |
for (int i = 0; i < n_gen; i++) { | |
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0)); | |
} | |
} | |
static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) { | |
(void) level; | |
(void) text; | |
(void) user_data; | |
} | |
int main(int argc, char ** argv) { | |
// try to set locale for unicode characters in markdown | |
setlocale(LC_CTYPE, ".UTF-8"); | |
fprintf(stderr, "warning: asserts enabled, performance may be affected\n"); | |
fprintf(stderr, "warning: debug build, performance may be affected\n"); | |
fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n"); | |
cmd_params params = parse_cmd_params(argc, argv); | |
// initialize llama.cpp | |
if (!params.verbose) { | |
llama_log_set(llama_null_log_callback, NULL); | |
} | |
bool numa = false; | |
llama_backend_init(numa); | |
// initialize printer | |
std::unique_ptr<printer> p; | |
switch (params.output_format) { | |
case CSV: | |
p.reset(new csv_printer()); | |
break; | |
case JSON: | |
p.reset(new json_printer()); | |
break; | |
case MARKDOWN: | |
p.reset(new markdown_printer()); | |
break; | |
case SQL: | |
p.reset(new sql_printer()); | |
break; | |
default: | |
assert(false); | |
exit(1); | |
} | |
p->fout = stdout; | |
p->print_header(params); | |
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params); | |
llama_model * lmodel = nullptr; | |
const cmd_params_instance * prev_inst = nullptr; | |
for (const auto & inst : params_instances) { | |
// keep the same model between tests when possible | |
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) { | |
if (lmodel) { | |
llama_free_model(lmodel); | |
} | |
lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams()); | |
if (lmodel == NULL) { | |
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str()); | |
return 1; | |
} | |
prev_inst = &inst; | |
} | |
llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams()); | |
if (ctx == NULL) { | |
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str()); | |
llama_free_model(lmodel); | |
return 1; | |
} | |
test t(inst, lmodel, ctx); | |
llama_kv_cache_tokens_rm(ctx, -1, -1); | |
// warmup run | |
if (t.n_prompt > 0) { | |
test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads); | |
} | |
if (t.n_gen > 0) { | |
test_gen(ctx, 1, 0, t.n_threads); | |
} | |
for (int i = 0; i < params.reps; i++) { | |
llama_kv_cache_tokens_rm(ctx, -1, -1); | |
uint64_t t_start = get_time_ns(); | |
if (t.n_prompt > 0) { | |
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads); | |
} | |
if (t.n_gen > 0) { | |
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads); | |
} | |
uint64_t t_ns = get_time_ns() - t_start; | |
t.samples_ns.push_back(t_ns); | |
} | |
p->print_test(t); | |
llama_print_timings(ctx); | |
llama_free(ctx); | |
} | |
llama_free_model(lmodel); | |
p->print_footer(); | |
llama_backend_free(); | |
return 0; | |
} | |