// Defines fileno on msys: #ifndef _GNU_SOURCE #define _GNU_SOURCE #include #include #include #endif #include "llama-util.h" #include "llama.h" #include "ggml.h" #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" #elif defined(GGML_USE_CLBLAST) #include "ggml-opencl.h" #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LLAMA_USE_SCRATCH #define LLAMA_MAX_SCRATCH_BUFFERS 16 // available llama models enum e_model { MODEL_UNKNOWN, MODEL_3B, MODEL_7B, MODEL_13B, MODEL_30B, MODEL_65B, }; static const size_t MB = 1024*1024; // computed for n_ctx == 2048 // TODO: dynamically determine these sizes // needs modifications in ggml typedef void (*offload_func_t)(struct ggml_tensor * tensor); void llama_nop(struct ggml_tensor * tensor) { // don't offload by default (void) tensor; } static const std::map & MEM_REQ_SCRATCH0() { static std::map k_sizes = { { MODEL_3B, 256ull * MB }, { MODEL_7B, 512ull * MB }, { MODEL_13B, 512ull * MB }, { MODEL_30B, 512ull * MB }, { MODEL_65B, 1024ull * MB }, }; return k_sizes; } static const std::map & MEM_REQ_SCRATCH1() { static std::map k_sizes = { { MODEL_3B, 256ull * MB }, { MODEL_7B, 512ull * MB }, { MODEL_13B, 512ull * MB }, { MODEL_30B, 512ull * MB }, { MODEL_65B, 1024ull * MB }, }; return k_sizes; } // 2*n_embd*n_ctx*n_layer*sizeof(float16) static const std::map & MEM_REQ_KV_SELF() { static std::map k_sizes = { { MODEL_3B, 682ull * MB }, { MODEL_7B, 1026ull * MB }, { MODEL_13B, 1608ull * MB }, { MODEL_30B, 3124ull * MB }, { MODEL_65B, 5120ull * MB }, }; return k_sizes; } // this is mostly needed for temporary mul_mat buffers to dequantize the data // not actually needed if BLAS is disabled static const std::map & MEM_REQ_EVAL() { static std::map k_sizes = { { MODEL_3B, 512ull * MB }, { MODEL_7B, 800ull * MB }, { MODEL_13B, 1024ull * MB }, { MODEL_30B, 1280ull * MB }, { MODEL_65B, 1536ull * MB }, }; return k_sizes; } // default hparams (LLaMA 7B) struct llama_hparams { uint32_t n_vocab = 32000; uint32_t n_ctx = 512; // this is provided as user input? uint32_t n_embd = 4096; uint32_t n_mult = 256; uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; bool operator!=(const llama_hparams & other) const { return static_cast(memcmp(this, &other, sizeof(llama_hparams))); } }; struct llama_layer { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * w1; struct ggml_tensor * w2; struct ggml_tensor * w3; }; struct llama_kv_cache { struct ggml_tensor * k; struct ggml_tensor * v; struct ggml_context * ctx = NULL; llama_ctx_buffer buf; int n; // number of tokens currently in the cache ~llama_kv_cache() { if (ctx) { ggml_free(ctx); } } }; struct llama_model { e_model type = MODEL_UNKNOWN; llama_hparams hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * output; std::vector layers; int n_gpu_layers; // context struct ggml_context * ctx = NULL; // key + value cache for the self attention // TODO: move to llama_state struct llama_kv_cache kv_self; // the model memory buffer llama_ctx_buffer buf; // model memory mapped file std::unique_ptr mapping; // objects representing data potentially being locked in memory llama_mlock mlock_buf; llama_mlock mlock_mmap; // for quantize-stats only std::vector> tensors_by_name; ~llama_model() { if (ctx) { ggml_free(ctx); } #ifdef GGML_USE_CUBLAS for (size_t i = 0; i < tensors_by_name.size(); ++i) { ggml_cuda_free_data(tensors_by_name[i].second); } #elif defined(GGML_USE_CLBLAST) for (size_t i = 0; i < tensors_by_name.size(); ++i) { ggml_cl_free_data(tensors_by_name[i].second); } #endif } }; struct llama_vocab { using id = int32_t; using token = std::string; struct token_score { token tok; float score; }; std::unordered_map token_to_id; std::vector id_to_token; }; struct llama_context { std::mt19937 rng; int64_t t_load_us = 0; int64_t t_start_us = 0; bool has_evaluated_once = false; int64_t t_sample_us = 0; int64_t t_eval_us = 0; int64_t t_p_eval_us = 0; int32_t n_sample = 0; // number of tokens sampled int32_t n_eval = 0; // number of eval calls int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) llama_model model; llama_vocab vocab; size_t mem_per_token = 0; // decode output (2-dimensional array: [n_tokens][n_vocab]) std::vector logits; bool logits_all = false; // input embedding (1-dimensional array: [n_embd]) std::vector embedding; // memory buffers used to evaluate the model // TODO: move in llama_state llama_ctx_buffer buf_compute; llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS]; #ifdef GGML_USE_METAL ggml_metal_context * ctx_metal = NULL; #endif int buf_last = 0; size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 }; void use_buf(struct ggml_context * ctx, int i) { #if defined(LLAMA_USE_SCRATCH) size_t last_size = 0; if (i == -1) { last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, }); } else { auto & buf = buf_scratch[i]; last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, }); } if (buf_last >= 0) { buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size); } buf_last = i; #else (void) i; (void) ctx; #endif } size_t get_buf_max_mem(int i) const { #if defined(LLAMA_USE_SCRATCH) return buf_max_size[i]; #else (void) i; return 0; #endif } }; template static T checked_mul(T a, T b) { T ret = a * b; if (a != 0 && ret / a != b) { throw std::runtime_error(format("overflow multiplying %llu * %llu", (unsigned long long) a, (unsigned long long) b)); } return ret; } static size_t checked_div(size_t a, size_t b) { if (b == 0 || a % b != 0) { throw std::runtime_error(format("error dividing %zu / %zu", a, b)); } return a / b; } static std::string llama_format_tensor_shape(const std::vector & ne) { char buf[256]; snprintf(buf, sizeof(buf), "%5u", ne.at(0)); for (size_t i = 1; i < ne.size(); i++) { snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i)); } return buf; } static size_t llama_calc_tensor_size(const std::vector & ne, enum ggml_type type) { size_t size = ggml_type_size(type); for (uint32_t dim : ne) { size = checked_mul(size, dim); } return size / ggml_blck_size(type); } struct llama_load_tensor_shard { std::vector ne; size_t size; enum ggml_type type; size_t file_idx; size_t file_off; void calc_size() { size = llama_calc_tensor_size(ne, type); } }; enum llama_split_type { SPLIT_NONE, SPLIT_BY_COLUMNS, SPLIT_BY_ROWS }; struct llama_load_tensor { std::vector shards; std::string name; enum ggml_type type = GGML_TYPE_F32; llama_split_type split_type = SPLIT_NONE; std::vector ne; size_t size; struct ggml_tensor * ggml_tensor = NULL; uint8_t * data; llama_load_tensor(const std::string & name) : name(name) {} void calc_all() { calc_type(); calc_split_type(); calc_ne(); calc_size(); } void calc_type() { const auto & first_shard = shards.at(0); for (const auto & shard : shards) { if (shard.type != first_shard.type) { throw std::runtime_error(format("inconsistent tensor shard type in '%s'", name.c_str())); } } type = first_shard.type; } void calc_split_type() { if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file shards.size() == 1) { // only one file? split_type = SPLIT_NONE; } else if (name.find("tok_embeddings.") == 0 || name.find(".attention.wo.weight") != std::string::npos || name.find(".feed_forward.w2.weight") != std::string::npos) { split_type = SPLIT_BY_COLUMNS; } else { split_type = SPLIT_BY_ROWS; } } void calc_ne() { const auto & first_shard = shards.at(0); for (const auto & shard : shards) { if (shard.ne != first_shard.ne) { throw std::runtime_error(format("inconsistent tensor shard shape in '%s': first was %s, other was %s", name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str())); } } ne = first_shard.ne; LLAMA_ASSERT(shards.size() <= UINT32_MAX); uint32_t n_shards = (uint32_t) shards.size(); switch (split_type) { case SPLIT_NONE: ne = first_shard.ne; break; case SPLIT_BY_COLUMNS: ne = {checked_mul(first_shard.ne[0], n_shards), first_shard.ne[1]}; break; case SPLIT_BY_ROWS: ne = {first_shard.ne[0], checked_mul(first_shard.ne[1], n_shards)}; break; } } void calc_size() { size = llama_calc_tensor_size(ne, type); } }; struct llama_load_tensors_map { // tensors is kept in a separate vector to preserve file order std::vector tensors; std::unordered_map name_to_idx; }; enum llama_file_version { LLAMA_FILE_VERSION_GGML, LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab LLAMA_FILE_VERSION_GGJT_V1, // added padding LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format }; struct llama_file_loader { llama_file file; llama_file_version file_version; llama_hparams hparams; llama_vocab vocab; llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map) : file(fname, "rb") { fprintf(stderr, "llama.cpp: loading model from %s\n", fname); read_magic(); read_hparams(); read_vocab(); read_tensor_metadata(file_idx, tensors_map); } void read_magic() { uint32_t magic = file.read_u32(); if (magic == LLAMA_FILE_MAGIC_GGML) { file_version = LLAMA_FILE_VERSION_GGML; return; } uint32_t version = file.read_u32(); switch (magic) { case LLAMA_FILE_MAGIC_GGMF: switch (version) { case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return; } break; case LLAMA_FILE_MAGIC_GGJT: switch (version) { case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return; case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return; case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return; } } throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?", magic, version)); } void read_hparams() { hparams.n_vocab = file.read_u32(); hparams.n_embd = file.read_u32(); hparams.n_mult = file.read_u32(); hparams.n_head = file.read_u32(); hparams.n_layer = file.read_u32(); hparams.n_rot = file.read_u32(); hparams.ftype = (enum llama_ftype) file.read_u32(); } void read_vocab() { vocab.id_to_token.resize(hparams.n_vocab); for (uint32_t i = 0; i < hparams.n_vocab; i++) { uint32_t len = file.read_u32(); std::string word = file.read_string(len); float score = 0.0f; if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) { file.read_raw(&score, sizeof(score)); } vocab.token_to_id[word] = i; auto & tok_score = vocab.id_to_token[i]; tok_score.tok = std::move(word); tok_score.score = score; } } void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) { while (file.tell() < file.size) { llama_load_tensor_shard shard; uint32_t n_dims = file.read_u32(); uint32_t name_len = file.read_u32(); shard.type = (enum ggml_type) file.read_u32(); shard.ne.resize(n_dims); file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims); std::string name = file.read_string(name_len); if (n_dims < 1 || n_dims > 2) { throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims)); } switch (shard.type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: break; default: { throw std::runtime_error(format("unrecognized tensor type %u\n", shard.type)); } } if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) { // skip to the next multiple of 32 bytes file.seek(-static_cast(file.tell()) & 31, SEEK_CUR); } shard.file_idx = file_idx; shard.file_off = file.tell(); shard.calc_size(); file.seek(shard.size, SEEK_CUR); auto it = tensors_map.name_to_idx.find(name); size_t idx; if (it != tensors_map.name_to_idx.end()) { idx = it->second; } else { tensors_map.tensors.emplace_back(name); idx = tensors_map.tensors.size() - 1; tensors_map.name_to_idx.emplace(name, idx); } tensors_map.tensors.at(idx).shards.push_back(shard); } } }; struct llama_file_saver { llama_file file; llama_file_loader * any_file_loader; llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype) : file(fname, "wb"), any_file_loader(any_file_loader) { fprintf(stderr, "llama.cpp: saving model to %s\n", fname); write_magic(); write_hparams(new_ftype); write_vocab(); } void write_magic() { file.write_u32(LLAMA_FILE_MAGIC); // magic file.write_u32(LLAMA_FILE_VERSION); // version } void write_hparams(enum llama_ftype new_ftype) { const llama_hparams & hparams = any_file_loader->hparams; file.write_u32(hparams.n_vocab); file.write_u32(hparams.n_embd); file.write_u32(hparams.n_mult); file.write_u32(hparams.n_head); file.write_u32(hparams.n_layer); file.write_u32(hparams.n_rot); file.write_u32(new_ftype); } void write_vocab() { if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) { fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n"); } uint32_t n_vocab = any_file_loader->hparams.n_vocab; for (uint32_t i = 0; i < n_vocab; i++) { const auto & token_score = any_file_loader->vocab.id_to_token.at(i); file.write_u32((uint32_t) token_score.tok.size()); file.write_raw(token_score.tok.data(), token_score.tok.size()); file.write_raw(&token_score.score, sizeof(token_score.score)); } } void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) { switch (new_type) { case GGML_TYPE_F32: case GGML_TYPE_F16: case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: case GGML_TYPE_Q6_K: break; default: LLAMA_ASSERT(false); } file.write_u32((uint32_t) tensor.ne.size()); file.write_u32((uint32_t) tensor.name.size()); file.write_u32(new_type); file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size()); file.write_raw(tensor.name.data(), tensor.name.size()); file.seek(-static_cast(file.tell()) & 31, SEEK_CUR); LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type)); file.write_raw(new_data, new_size); } }; struct llama_model_loader { std::vector> file_loaders; llama_load_tensors_map tensors_map; bool use_mmap; size_t num_ggml_tensors_created = 0; struct ggml_context * ggml_ctx = NULL; std::unique_ptr mapping; llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) { auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map); file_loaders.emplace_back(first_file); uint32_t n_parts = vocab_only ? 1 : guess_n_parts(); for (uint32_t i = 1; i < n_parts; i++) { std::string fname = fname_base + "." + std::to_string(i); auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map); file_loaders.emplace_back(ith_file); if (ith_file->hparams != first_file->hparams) { throw std::runtime_error(format("llama.cpp: hparams inconsistent between files")); } } if (!llama_mmap::SUPPORTED) { use_mmap = false; } if (use_mmap && alignment_prevents_mmap()) { fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n"); use_mmap = false; } this->use_mmap = use_mmap; for (llama_load_tensor & lt : tensors_map.tensors) { lt.calc_all(); } } bool alignment_prevents_mmap() { for (const llama_load_tensor & lt : tensors_map.tensors) { for (const llama_load_tensor_shard & shard : lt.shards) { if (shard.file_off & 3) { return true; } } } return false; } uint32_t guess_n_parts() const { auto it = tensors_map.name_to_idx.find("tok_embeddings.weight"); if (it == tensors_map.name_to_idx.end()) { throw std::runtime_error(std::string("missing tok_embeddings.weight")); } const llama_load_tensor & lt = tensors_map.tensors.at(it->second); return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0); } void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const { *ctx_size_p = *mmapped_size_p = 0; for (const llama_load_tensor & lt : tensors_map.tensors) { *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE; *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size; } } struct ggml_tensor * get_tensor(const std::string & name, const std::vector & ne, ggml_backend backend) { auto it = tensors_map.name_to_idx.find(name); if (it == tensors_map.name_to_idx.end()) { throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str()))); } llama_load_tensor & lt = tensors_map.tensors.at(it->second); if (lt.ne != ne) { throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s", name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str())); } return get_tensor_for(lt, backend); } struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) { struct ggml_tensor * tensor; if (backend != GGML_BACKEND_CPU) { ggml_set_no_alloc(ggml_ctx, true); } if (lt.ne.size() == 2) { tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); } else { LLAMA_ASSERT(lt.ne.size() == 1); tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0)); } ggml_set_name(tensor, lt.name.c_str()); LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor if (backend != GGML_BACKEND_CPU) { ggml_set_no_alloc(ggml_ctx, use_mmap); } tensor->backend = backend; lt.ggml_tensor = tensor; num_ggml_tensors_created++; return tensor; } void done_getting_tensors() const { if (num_ggml_tensors_created != tensors_map.tensors.size()) { throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected")); } } void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) { size_t data_size = 0; size_t prefetch_size = 0; size_t lock_size = 0; for (const llama_load_tensor & lt : tensors_map.tensors) { data_size += lt.size; if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { prefetch_size += lt.size; } } if (use_mmap) { mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size)); if (lmlock) { lmlock->init(mapping->addr); } } size_t done_size = 0; for (llama_load_tensor & lt : tensors_map.tensors) { if (progress_callback) { progress_callback((float) done_size / data_size, progress_callback_user_data); } LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already lt.data = (uint8_t *) lt.ggml_tensor->data; // allocate temp buffer if not using mmap if (!use_mmap && lt.data == NULL) { GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU); lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor)); } load_data_for(lt); switch(lt.ggml_tensor->backend) { case GGML_BACKEND_CPU: lt.ggml_tensor->data = lt.data; if (use_mmap && lmlock) { lock_size += lt.size; lmlock->grow_to(lock_size); } break; #if defined(GGML_USE_CUBLAS) case GGML_BACKEND_GPU: case GGML_BACKEND_GPU_SPLIT: ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor); if (!use_mmap) { free(lt.data); } break; #elif defined(GGML_USE_CLBLAST) case GGML_BACKEND_GPU: ggml_cl_transform_tensor(lt.data, lt.ggml_tensor); if (!use_mmap) { free(lt.data); } break; #endif default: continue; } done_size += lt.size; } } void load_data_for(llama_load_tensor & lt) { if (use_mmap) { LLAMA_ASSERT(lt.shards.size() == 1); lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off; } else if (lt.split_type == SPLIT_NONE) { llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file; file.seek(lt.shards.at(0).file_off, SEEK_SET); file.read_raw(lt.data, lt.size); } else if (lt.split_type == SPLIT_BY_ROWS) { size_t offset = 0; for (llama_load_tensor_shard & shard : lt.shards) { llama_file & file = file_loaders.at(shard.file_idx)->file; file.seek(shard.file_off, SEEK_SET); file.read_raw(lt.data + offset, shard.size); offset += shard.size; } LLAMA_ASSERT(offset == lt.size); } else if (lt.split_type == SPLIT_BY_COLUMNS) { // Let's load the data into temporary buffers to ensure the OS performs large loads. std::vector tmp_bufs(lt.shards.size()); for (size_t i = 0; i < lt.shards.size(); i++) { llama_load_tensor_shard & shard = lt.shards.at(i); llama_file & file = file_loaders.at(shard.file_idx)->file; file.seek(shard.file_off, SEEK_SET); tmp_bufs.at(i).resize(shard.size); file.read_raw(tmp_bufs.at(i).addr, shard.size); } // Then reshape. size_t num_rows = lt.ne.at(1); size_t per_shard_row_size = lt.shards.at(0).size / num_rows; size_t out_offset = 0; for (size_t row = 0; row < num_rows; row++) { for (llama_buffer & tmp_buf : tmp_bufs) { memcpy(lt.data + out_offset, tmp_buf.addr + row * per_shard_row_size, per_shard_row_size); out_offset += per_shard_row_size; } } LLAMA_ASSERT(out_offset == lt.size); } if (0) { print_checksum(lt); } } static void print_checksum(llama_load_tensor & lt) { uint32_t sum = 0; for (size_t i = 0; i < lt.size; i++) { uint8_t byte = lt.data[i]; sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash } fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum, llama_format_tensor_shape(lt.ne).c_str(), lt.size); } }; // // kv cache // static bool kv_cache_init( const struct llama_hparams & hparams, struct llama_kv_cache & cache, ggml_type wtype, int n_ctx) { const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int64_t n_mem = n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); struct ggml_init_params params; params.mem_size = cache.buf.size; params.mem_buffer = cache.buf.addr; params.no_alloc = false; cache.ctx = ggml_init(params); if (!cache.ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); ggml_set_name(cache.k, "cache_k"); ggml_set_name(cache.v, "cache_v"); return true; } struct llama_context_params llama_context_default_params() { struct llama_context_params result = { /*.n_ctx =*/ 512, /*.n_batch =*/ 512, /*.gpu_layers =*/ 0, /*.main_gpu =*/ 0, /*.tensor_split =*/ {0}, /*.seed =*/ -1, /*.f16_kv =*/ true, /*.logits_all =*/ false, /*.vocab_only =*/ false, /*.use_mmap =*/ true, /*.use_mlock =*/ false, /*.embedding =*/ false, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, }; return result; } struct llama_model_quantize_params llama_model_quantize_default_params() { struct llama_model_quantize_params result = { /*.nthread =*/ 0, /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1, /*.allow_requantize =*/ false, /*.quantize_output_tensor =*/ true, }; return result; } bool llama_mmap_supported() { return llama_mmap::SUPPORTED; } bool llama_mlock_supported() { return llama_mlock::SUPPORTED; } void llama_init_backend() { ggml_time_init(); // needed to initialize f16 tables { struct ggml_init_params params = { 0, NULL, false }; struct ggml_context * ctx = ggml_init(params); ggml_free(ctx); } } int64_t llama_time_us() { return ggml_time_us(); } // // model loading // static const char *llama_file_version_name(llama_file_version version) { switch (version) { case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)"; case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)"; case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)"; case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)"; case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)"; } return "unknown"; } static const char *llama_ftype_name(enum llama_ftype ftype) { switch (ftype) { case LLAMA_FTYPE_ALL_F32: return "all F32"; case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16"; case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: return "mostly Q4_1, some F16"; case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0"; case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1"; case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0"; // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K"; case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small"; case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large"; case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small"; case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small"; case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium"; case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K"; default: return "unknown, may not work"; } } static const char *llama_model_type_name(e_model type) { switch (type) { case MODEL_3B: return "3B"; case MODEL_7B: return "7B"; case MODEL_13B: return "13B"; case MODEL_30B: return "30B"; case MODEL_65B: return "65B"; default: LLAMA_ASSERT(false); } } static void llama_model_load_internal( const std::string & fname, llama_context & lctx, int n_ctx, int n_batch, int n_gpu_layers, int main_gpu, const float * tensor_split, ggml_type memory_type, bool use_mmap, bool use_mlock, bool vocab_only, llama_progress_callback progress_callback, void * progress_callback_user_data) { lctx.t_start_us = ggml_time_us(); std::unique_ptr ml(new llama_model_loader(fname, use_mmap, vocab_only)); lctx.vocab = std::move(ml->file_loaders.at(0)->vocab); auto & model = lctx.model; model.hparams = ml->file_loaders.at(0)->hparams; model.n_gpu_layers = n_gpu_layers; llama_file_version file_version = ml->file_loaders.at(0)->file_version; auto & hparams = model.hparams; { switch (hparams.n_layer) { case 26: model.type = e_model::MODEL_3B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = e_model::MODEL_13B; break; case 60: model.type = e_model::MODEL_30B; break; case 80: model.type = e_model::MODEL_65B; break; default: { if (hparams.n_layer < 32) { model.type = e_model::MODEL_7B; } } break; } hparams.n_ctx = n_ctx; } const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; { fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version)); fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab); fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx); fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd); fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult); fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size()); fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); } if (file_version < LLAMA_FILE_VERSION_GGJT_V2) { if (hparams.ftype != LLAMA_FTYPE_ALL_F32 && hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 && hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) { printf("\nthis format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"); } } if (file_version < LLAMA_FILE_VERSION_GGJT_V3) { if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 || hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) { printf("\nthis format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"); } } if (vocab_only) { return; } auto & ctx = model.ctx; size_t ctx_size; size_t mmapped_size; ml->calc_sizes(&ctx_size, &mmapped_size); fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0); // create the ggml context { lctx.model.buf.resize(ctx_size); if (use_mlock) { lctx.model.mlock_buf.init(lctx.model.buf.addr); lctx.model.mlock_buf.grow_to(lctx.model.buf.size); } struct ggml_init_params params = { /*.mem_size =*/ lctx.model.buf.size, /*.mem_buffer =*/ lctx.model.buf.addr, /*.no_alloc =*/ ml->use_mmap, }; model.ctx = ggml_init(params); if (!model.ctx) { throw std::runtime_error(format("ggml_init() failed")); } } (void) main_gpu; #if defined(GGML_USE_CUBLAS) fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__); ggml_cuda_set_main_device(main_gpu); #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT #elif defined(GGML_USE_CLBLAST) fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__); #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU #else #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU #endif // prepare memory for the weights size_t vram_weights = 0; size_t vram_scratch = 0; { const uint32_t n_embd = hparams.n_embd; const uint32_t n_layer = hparams.n_layer; const uint32_t n_vocab = hparams.n_vocab; ml->ggml_ctx = ctx; model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU); model.norm = ml->get_tensor("norm.weight", {n_embd}, GGML_BACKEND_CPU); // "output" tensor { ggml_backend backend_output; if (n_gpu_layers > int(n_layer)) { // NOLINT backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT; } else { backend_output = GGML_BACKEND_CPU; } model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output); } const int i_gpu_start = n_layer - n_gpu_layers; model.layers.resize(n_layer); for (uint32_t i = 0; i < n_layer; ++i) { const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT auto & layer = model.layers[i]; std::string layers_i = "layers." + std::to_string(i); layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend); layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split); layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split); layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split); layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split); layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend); layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split); layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split); layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); } } } ml->done_getting_tensors(); // print memory requirements { const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1; // this is the total memory required to run the inference const size_t mem_required = ctx_size + mmapped_size - vram_weights + // weights in VRAM not in memory MEM_REQ_SCRATCH0().at(model.type) + MEM_REQ_SCRATCH1().at(model.type) + MEM_REQ_EVAL().at (model.type); // this is the memory required by one llama_state const size_t mem_required_state = scale*MEM_REQ_KV_SELF().at(model.type); fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); (void) vram_scratch; (void) n_batch; #ifdef GGML_USE_CUBLAS vram_scratch = n_batch * MB; ggml_cuda_set_scratch_size(vram_scratch); if (n_gpu_layers > 0) { fprintf(stderr, "%s: allocating batch_size x 1 MB = %ld MB VRAM for the scratch buffer\n", __func__, vram_scratch / MB); } #endif // GGML_USE_CUBLAS #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); fprintf(stderr, "%s: offloading %d layers to GPU\n", __func__, n_gpu); if (n_gpu_layers > (int) hparams.n_layer) { fprintf(stderr, "%s: offloading output layer to GPU\n", __func__); } fprintf(stderr, "%s: total VRAM used: %zu MB\n", __func__, (vram_weights + vram_scratch + MB - 1) / MB); // round up #else (void) n_gpu_layers; #endif } // populate `tensors_by_name` for (llama_load_tensor & lt : ml->tensors_map.tensors) { model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor); } (void) tensor_split; #if defined(GGML_USE_CUBLAS) { ggml_cuda_set_tensor_split(tensor_split); } #endif ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); if (progress_callback) { progress_callback(1.0f, progress_callback_user_data); } model.mapping = std::move(ml->mapping); // loading time will be recalculate after the first eval, so // we take page faults deferred by mmap() into consideration lctx.t_load_us = ggml_time_us() - lctx.t_start_us; } static bool llama_model_load( const std::string & fname, llama_context & lctx, int n_ctx, int n_batch, int n_gpu_layers, int main_gpu, float * tensor_split, ggml_type memory_type, bool use_mmap, bool use_mlock, bool vocab_only, llama_progress_callback progress_callback, void *progress_callback_user_data) { try { llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, memory_type, use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); return true; } catch (const std::exception & err) { fprintf(stderr, "error loading model: %s\n", err.what()); return false; } } // evaluate the transformer // // - lctx: llama context // - tokens: new batch of tokens to process // - n_past: the context size so far // - n_threads: number of threads to use // - cgraph_fname: filename of the exported computation graph // static bool llama_eval_internal( llama_context & lctx, const llama_token * tokens, const int n_tokens, const int n_past, const int n_threads, const char * cgraph_fname) { // // enforce that the first token is BOS // if (n_past == 0 && tokens[0] != llama_token_bos()) { // fprintf(stderr, "%s: first token must be BOS\n", __func__); // return false; // } const int64_t t_start_us = ggml_time_us(); const int N = n_tokens; const auto & model = lctx.model; const auto & hparams = model.hparams; const auto & kv_self = model.kv_self; LLAMA_ASSERT(!!kv_self.ctx); const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_embd/hparams.n_head; const int n_gpu_layers = model.n_gpu_layers; auto & mem_per_token = lctx.mem_per_token; auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.addr, /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(params); // for big prompts, if BLAS is enabled, it is better to use only one thread // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance ggml_cgraph gf = {}; gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); ggml_set_name(embd, "embd"); memcpy(embd->data, tokens, N*ggml_element_size(embd)); struct ggml_tensor * cur; struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); const int i_gpu_start = n_layer - n_gpu_layers; (void) i_gpu_start; for (int il = 0; il < n_layer; ++il) { offload_func_t offload_func = llama_nop; #ifdef GGML_USE_CUBLAS if (il >= i_gpu_start) { offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU } #endif // GGML_USE_CUBLAS struct ggml_tensor * inpSA = inpL; lctx.use_buf(ctx0, 0); // norm { cur = ggml_rms_norm(ctx0, inpL); offload_func(cur); ggml_set_name(cur, "rms_norm_0"); // cur = cur*attention_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm); offload_func(cur); ggml_set_name(cur, "attention_norm_0"); } // self-attention { // compute Q and K and RoPE them struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur); // offload_func(tmpq); ggml_set_name(tmpq, "tmpq"); struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur); // offload_func(tmpk); ggml_set_name(tmpk, "tmpk"); struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0); ggml_set_name(Kcur, "Kcur"); struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0); ggml_set_name(Qcur, "Qcur"); // store key and value to memory { // compute the transposed [N, n_embd] V matrix struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N)); ggml_set_name(Vcur, "Vcur"); struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); ggml_set_name(k, "k"); struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(kv_self.v), (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v)); ggml_set_name(v, "v"); // important: storing RoPE-ed version of K in the KV cache! ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); ggml_set_name(Q, "Q"); struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); ggml_set_name(K, "K"); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); ggml_set_name(KQ, "KQ"); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)); ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)"); // KQ_scaled shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); ggml_set_name(KQ_scaled, "KQ_scaled"); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); ggml_set_name(KQ_masked, "KQ_masked"); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); ggml_set_name(KQ_soft_max, "KQ_soft_max"); // split cached V into n_head heads struct ggml_tensor * V = ggml_view_3d(ctx0, kv_self.v, n_past + N, n_embd/n_head, n_head, n_ctx*ggml_element_size(kv_self.v), n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head, il*n_ctx*ggml_element_size(kv_self.v)*n_embd); ggml_set_name(V, "V"); #if 1 struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); ggml_set_name(KQV, "KQV"); #else // make V contiguous in memory to speed up the matmul, however we waste time on the copy // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation // is there a better way? struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head)); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max); #endif // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); ggml_set_name(KQV_merged, "KQV_merged"); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); ggml_set_name(cur, "KQV_merged_contiguous"); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); offload_func(cur); ggml_set_name(cur, "result_wo"); } lctx.use_buf(ctx0, 1); //ggml_cuda_set_scratch(1); struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); offload_func(inpFF); ggml_set_name(inpFF, "inpFF"); // feed-forward network { // norm { cur = ggml_rms_norm(ctx0, inpFF); offload_func(cur); ggml_set_name(cur, "rms_norm_1"); // cur = cur*ffn_norm(broadcasted) cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm); offload_func(cur); ggml_set_name(cur, "ffn_norm"); } struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model.layers[il].w3, cur); offload_func(tmp); ggml_set_name(tmp, "result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w1, cur); offload_func(cur); ggml_set_name(cur, "result_w2"); // SILU activation cur = ggml_silu(ctx0, cur); offload_func(cur); ggml_set_name(cur, "silu"); cur = ggml_mul(ctx0, cur, tmp); offload_func(cur); ggml_set_name(cur, "silu_x_result_w3"); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); offload_func(cur); ggml_set_name(cur, "result_w2"); } cur = ggml_add(ctx0, cur, inpFF); offload_func(cur); ggml_set_name(cur, "inpFF_+_result_w2"); // input for next layer inpL = cur; } lctx.use_buf(ctx0, 0); //ggml_cuda_set_scratch(0); // used at the end to optionally extract the embeddings struct ggml_tensor * embeddings = NULL; offload_func_t offload_func = llama_nop; #ifdef GGML_USE_CUBLAS if (n_gpu_layers > n_layer) { offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU } #endif // GGML_USE_CUBLAS // norm { cur = ggml_rms_norm(ctx0, inpL); offload_func(cur); ggml_set_name(cur, "rms_norm_inpL"); cur = ggml_rms_norm(ctx0, cur); offload_func(cur); ggml_set_name(cur, "rms_norm_after"); // cur = cur*norm(broadcasted) cur = ggml_mul(ctx0, cur, model.norm); offload_func(cur); ggml_set_name(cur, "result_norm"); embeddings = cur; } // lm_head cur = ggml_mul_mat(ctx0, model.output, cur); ggml_set_name(cur, "result_output"); lctx.use_buf(ctx0, -1); // logits -> probs //cur = ggml_soft_max_inplace(ctx0, cur); // run the computation ggml_build_forward_expand(&gf, cur); #ifdef GGML_USE_METAL if (lctx.ctx_metal && N == 1) { ggml_metal_graph_compute(lctx.ctx_metal, &gf); ggml_metal_get_tensor (lctx.ctx_metal, cur); } else { // IMPORTANT: // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX // coprocessor. // // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch. // But for now, we have focused only on Matrix x Vector Metal multiplication. // // TODO: avoid these syncs via shared memory (ref #1696) // if (lctx.ctx_metal) { // We need to sync the GPU KV cache with the CPU KV cache ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k); ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v); } ggml_graph_compute(ctx0, &gf); } #else ggml_graph_compute(ctx0, &gf); #endif if (cgraph_fname) { ggml_graph_export(&gf, cgraph_fname); } #ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) // requires GGML_PERF to be defined ggml_graph_print(&gf); #endif // plot the computation graph in dot format (for debugging purposes) //if (n_past%100 == 0) { // ggml_graph_dump_dot(&gf, NULL, "llama.dot"); //} //embd_w.resize(n_vocab*N); //memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N); // update kv token count lctx.model.kv_self.n = n_past + N; // extract logits { auto & logits_out = lctx.logits; if (lctx.logits_all) { logits_out.resize(n_vocab * N); memcpy(logits_out.data(), (float *) ggml_get_data(cur), sizeof(float)*n_vocab*N); } else { // return result for just the last token logits_out.resize(n_vocab); memcpy(logits_out.data(), (float *) ggml_get_data(cur) + (n_vocab*(N-1)), sizeof(float)*n_vocab); } } // extract embeddings if (!lctx.embedding.empty()) { auto & embedding_out = lctx.embedding; embedding_out.resize(n_embd); memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd); } if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } #if 0 printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, lctx.get_buf_max_mem(0)/1024.0/1024.0, lctx.get_buf_max_mem(1)/1024.0/1024.0); #endif ggml_free(ctx0); // measure the performance only for the single-token evals if (N == 1) { lctx.t_eval_us += ggml_time_us() - t_start_us; lctx.n_eval++; } else if (N > 1) { lctx.t_p_eval_us += ggml_time_us() - t_start_us; lctx.n_p_eval += N; } return true; } // // tokenizer // static size_t utf8_len(char src) { const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t highbits = static_cast(src) >> 4; return lookup[highbits]; } struct llama_sp_symbol { using index = int; index prev; index next; const char * text; size_t n; }; static_assert(std::is_trivially_copyable::value, "llama_sp_symbol is not trivially copyable"); struct llama_sp_bigram { struct comparator { bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) { return (l.score < r.score) || (l.score == r.score && l.left > r.left); } }; using queue_storage = std::vector; using queue = std::priority_queue; llama_sp_symbol::index left; llama_sp_symbol::index right; float score; size_t size; }; // original implementation: // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 struct llama_tokenizer { llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {} void tokenize(const std::string & text, std::vector & output) { // split string into utf8 chars int index = 0; size_t offs = 0; while (offs < text.size()) { llama_sp_symbol sym; size_t char_len = std::min(text.size() - offs, utf8_len(text[offs])); sym.text = text.c_str() + offs; sym.n = char_len; offs += char_len; sym.prev = index - 1; sym.next = offs == text.size() ? -1 : index + 1; index++; symbols_.emplace_back(sym); } // seed the work queue with all possible 2-character tokens. for (size_t i = 1; i < symbols_.size(); ++i) { try_add_bigram(i - 1, i); } // keep substituting the highest frequency pairs for as long as we can. while (!work_queue_.empty()) { auto bigram = work_queue_.top(); work_queue_.pop(); auto & left_sym = symbols_[bigram.left]; auto & right_sym = symbols_[bigram.right]; // if one of the symbols already got merged, skip it. if (left_sym.n == 0 || right_sym.n == 0 || left_sym.n + right_sym.n != bigram.size) { continue; } // merge the right sym into the left one left_sym.n += right_sym.n; right_sym.n = 0; //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); // remove the right sym from the chain left_sym.next = right_sym.next; if (right_sym.next >= 0) { symbols_[right_sym.next].prev = bigram.left; } // find more substitutions try_add_bigram(left_sym.prev, bigram.left); try_add_bigram(bigram.left, left_sym.next); } for (int i = 0; i != -1; i = symbols_[i].next) { auto & symbol = symbols_[i]; auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n)); if (token == vocab_.token_to_id.end()) { // output any symbols that did not form tokens as bytes. for (int j = 0; j < (int) symbol.n; ++j) { llama_vocab::id token_id = static_cast(symbol.text[j]) + 3; output.push_back(token_id); } } else { output.push_back((*token).second); } } } private: void try_add_bigram(int left, int right) { if (left == -1 || right == -1) { return; } const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n); auto token = vocab_.token_to_id.find(text); if (token == vocab_.token_to_id.end()) { return; } if (static_cast((*token).second) >= vocab_.id_to_token.size()) { return; } const auto &tok_score = vocab_.id_to_token[(*token).second]; llama_sp_bigram bigram; bigram.left = left; bigram.right = right; bigram.score = tok_score.score; bigram.size = text.size(); work_queue_.push(bigram); } const llama_vocab & vocab_; std::vector symbols_; llama_sp_bigram::queue work_queue_; }; static std::vector llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) { llama_tokenizer tokenizer(vocab); std::vector output; if (text.empty()) { return output; } if (bos) { output.push_back(llama_token_bos()); } tokenizer.tokenize(text, output); return output; } // // sampling // void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { assert(candidates->size > 0); const int64_t t_start_sample_us = ggml_time_us(); // Sort the logits in descending order if (!candidates->sorted) { std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); candidates->sorted = true; } float max_l = candidates->data[0].logit; float cum_sum = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { float p = expf(candidates->data[i].logit - max_l); candidates->data[i].p = p; cum_sum += p; } for (size_t i = 0; i < candidates->size; ++i) { candidates->data[i].p /= cum_sum; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) { const int64_t t_start_sample_us = ggml_time_us(); k = std::max(k, (int) min_keep); k = std::min(k, (int) candidates->size); // Sort scores in descending order if (!candidates->sorted) { auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; if (k == (int) candidates->size) { std::sort(candidates->data, candidates->data + candidates->size, comp); } else { std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); } candidates->sorted = true; } candidates->size = k; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { if (p >= 1.0f) { return; } const int64_t t_start_sample_us = ggml_time_us(); llama_sample_softmax(ctx, candidates); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < candidates->size; ++i) { cum_sum += candidates->data[i].p; // Check if the running sum is greater than p or if we have kept at least min_keep tokens if (cum_sum > p && i >= min_keep) { last_idx = i; break; } } // Resize the output vector to keep only the top-p tokens candidates->size = last_idx; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) { if (z >= 1.0f || candidates->size <= 2) { return; } const int64_t t_start_sample_us = ggml_time_us(); llama_sample_softmax(nullptr, candidates); // Compute the first and second derivatives std::vector first_derivatives(candidates->size - 1); std::vector second_derivatives(candidates->size - 2); for (size_t i = 0; i < first_derivatives.size(); ++i) { first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; } for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; } // Calculate absolute value of second derivatives for (size_t i = 0; i < second_derivatives.size(); ++i) { second_derivatives[i] = abs(second_derivatives[i]); } // Normalize the second derivatives float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); for (float & value : second_derivatives) { value /= second_derivatives_sum; } float cum_sum = 0.0f; size_t last_idx = candidates->size; for (size_t i = 0; i < second_derivatives.size(); ++i) { cum_sum += second_derivatives[i]; // Check if the running sum is greater than z or if we have kept at least min_keep tokens if (cum_sum > z && i >= min_keep) { last_idx = i; break; } } // Resize the output vector to keep only the tokens above the tail location candidates->size = last_idx; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { // Reference implementation: // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr if (p >= 1.0f) { return; } const int64_t t_start_sample_us = ggml_time_us(); // Compute the softmax of logits and calculate entropy llama_sample_softmax(nullptr, candidates); float entropy = 0.0f; for (size_t i = 0; i < candidates->size; ++i) { entropy += -candidates->data[i].p * logf(candidates->data[i].p); } // Compute the absolute difference between negative log probability and entropy for each candidate std::vector shifted_scores; for (size_t i = 0; i < candidates->size; ++i) { float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); shifted_scores.push_back(shifted_score); } // Sort tokens based on the shifted_scores and their corresponding indices std::vector indices(candidates->size); std::iota(indices.begin(), indices.end(), 0); std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { return shifted_scores[a] < shifted_scores[b]; }); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = indices.size(); for (size_t i = 0; i < indices.size(); ++i) { size_t idx = indices[i]; cum_sum += candidates->data[idx].p; // Check if the running sum is greater than typical or if we have kept at least min_keep tokens if (cum_sum > p && i >= min_keep - 1) { last_idx = i + 1; break; } } // Resize the output vector to keep only the locally typical tokens std::vector new_candidates; for (size_t i = 0; i < last_idx; ++i) { size_t idx = indices[i]; new_candidates.push_back(candidates->data[idx]); } // Replace the data in candidates with the new_candidates data std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); candidates->size = new_candidates.size(); if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { const int64_t t_start_sample_us = ggml_time_us(); for (size_t i = 0; i < candidates_p->size; ++i) { candidates_p->data[i].logit /= temp; } if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) { if (last_tokens_size == 0 || penalty == 1.0f) { return; } const int64_t t_start_sample_us = ggml_time_us(); for (size_t i = 0; i < candidates->size; ++i) { const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id); if (token_iter == last_tokens + last_tokens_size) { continue; } // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. // This is common fix for this problem, which is to multiply by the penalty instead of dividing. if (candidates->data[i].logit <= 0) { candidates->data[i].logit *= penalty; } else { candidates->data[i].logit /= penalty; } } candidates->sorted = false; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) { if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) { return; } const int64_t t_start_sample_us = ggml_time_us(); // Create a frequency map to count occurrences of each token in last_tokens std::unordered_map token_count; for (size_t i = 0; i < last_tokens_size; ++i) { token_count[last_tokens_p[i]]++; } // Apply frequency and presence penalties to the candidates for (size_t i = 0; i < candidates->size; ++i) { auto token_iter = token_count.find(candidates->data[i].id); if (token_iter == token_count.end()) { continue; } int count = token_iter->second; candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence; } candidates->sorted = false; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } } llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) { assert(ctx); auto N = float(llama_n_vocab(ctx)); int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); llama_sample_softmax(nullptr, candidates); // Estimate s_hat using the most probable m tokens float s_hat = 0.0; float sum_ti_bi = 0.0; float sum_ti_sq = 0.0; for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { float t_i = logf(float(i + 2) / float(i + 1)); float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); sum_ti_bi += t_i * b_i; sum_ti_sq += t_i * t_i; } s_hat = sum_ti_bi / sum_ti_sq; // Compute k from the estimated s_hat and target surprise value float epsilon_hat = s_hat - 1; float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); // Sample the next word X using top-k sampling llama_sample_top_k(nullptr, candidates, int(k), 1); if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } llama_token X = llama_sample_token(ctx, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; } return X; } llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { assert(ctx); int64_t t_start_sample_us; t_start_sample_us = ggml_time_us(); llama_sample_softmax(ctx, candidates); // Truncate the words with surprise values greater than mu candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return -log2f(candidate.p) > *mu; })); if (candidates->size == 0) { candidates->size = 1; } // Normalize the probabilities of the remaining words llama_sample_softmax(ctx, candidates); // Sample the next word X from the remaining words if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } llama_token X = llama_sample_token(ctx, candidates); t_start_sample_us = ggml_time_us(); // Compute error as the difference between observed surprise and target surprise value size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { return candidate.id == X; })); float observed_surprise = -log2f(candidates->data[X_idx].p); float e = observed_surprise - tau; // Update mu using the learning rate and error *mu = *mu - eta * e; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } return X; } llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) { const int64_t t_start_sample_us = ggml_time_us(); // Find max element auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { return a.logit < b.logit; }); llama_token result = max_iter->id; if (ctx) { ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; } return result; } llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { assert(ctx); const int64_t t_start_sample_us = ggml_time_us(); llama_sample_softmax(nullptr, candidates); std::vector probs; probs.reserve(candidates->size); for (size_t i = 0; i < candidates->size; ++i) { probs.push_back(candidates->data[i].p); } std::discrete_distribution<> dist(probs.begin(), probs.end()); auto & rng = ctx->rng; int idx = dist(rng); llama_token result = candidates->data[idx].id; ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; return result; } // // quantization // static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) { if (output.size < nelements * sizeof(float)) { output.resize(nelements * sizeof(float)); } float * f32_output = (float *) output.addr; quantize_fns_t qtype; if (ggml_is_quantized(tensor.type)) { qtype = ggml_internal_get_quantize_fn(tensor.type); if (qtype.dequantize_row_q == NULL) { throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type))); } } else if (tensor.type != GGML_TYPE_F16) { throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type))); } if (nthread < 2) { if (tensor.type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements); } else if (ggml_is_quantized(tensor.type)) { qtype.dequantize_row_q(tensor.data, f32_output, nelements); } else { LLAMA_ASSERT(false); // unreachable } return; } auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type); auto block_size_bytes = ggml_type_size(tensor.type); LLAMA_ASSERT(nelements % block_size == 0); auto nblocks = nelements / block_size; auto blocks_per_thread = nblocks / nthread; auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count std::vector workers; for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) { auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread auto thr_elems = thr_blocks * block_size; // number of elements for this thread auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { if (typ == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); } else { qtype.dequantize_row_q(inbuf, outbuf, nels); } }; workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems)); in_buff_offs += thr_block_bytes; out_buff_offs += thr_elems; } for (auto & worker : workers) { worker.join(); } } static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { ggml_type quantized_type; llama_ftype ftype = params->ftype; int nthread = params->nthread; switch (params->ftype) { case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break; case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break; case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break; case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break; case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break; case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break; case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break; #ifdef GGML_USE_K_QUANTS // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; case LLAMA_FTYPE_MOSTLY_Q3_K_S: case LLAMA_FTYPE_MOSTLY_Q3_K_M: case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; case LLAMA_FTYPE_MOSTLY_Q4_K_S: case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break; case LLAMA_FTYPE_MOSTLY_Q5_K_S: case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break; case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; #endif default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); } if (nthread <= 0) { nthread = std::thread::hardware_concurrency(); } std::unique_ptr model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false, /*vocab_only*/ false)); llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype); #ifdef GGML_USE_K_QUANTS int n_attention_wv = 0; int n_feed_forward_w2 = 0; for (auto& tensor : model_loader->tensors_map.tensors) { if (tensor.name.find("attention.wv.weight") != std::string::npos) { ++n_attention_wv; } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { ++n_feed_forward_w2; } } int i_attention_wv = 0; int i_feed_forward_w2 = 0; #endif size_t total_size_org = 0; size_t total_size_new = 0; std::vector hist_all(1 << 4, 0); std::vector workers; std::mutex mutex; size_t idx = 0; for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) { llama_buffer read_data; read_data.resize(tensor.size); tensor.data = read_data.addr; model_loader->load_data_for(tensor); printf("[%4zu/%4zu] %36s - %16s, type = %6s, ", ++idx, model_loader->tensors_map.tensors.size(), tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(), ggml_type_name(tensor.type)); // This used to be a regex, but has an extreme cost to compile times. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'? // quantize only 2D tensors quantize &= (tensor.ne.size() == 2); quantize &= params->quantize_output_tensor || tensor.name != "output.weight"; quantize &= quantized_type != tensor.type; enum ggml_type new_type; void * new_data; size_t new_size; llama_buffer work; if (!quantize) { new_type = tensor.type; new_data = tensor.data; new_size = tensor.size; printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0); } else { new_type = quantized_type; #ifdef GGML_USE_K_QUANTS if (tensor.name == "output.weight") { new_type = GGML_TYPE_Q6_K; } else if (tensor.name.find("attention.wv.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 || (i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; ++i_attention_wv; } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && (i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 || (i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; ++i_feed_forward_w2; } else if (tensor.name.find("attention.wo.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; } #endif float * f32_data; size_t nelements = tensor.ne.at(0) * tensor.ne.at(1); llama_buffer f32_conv_buf; if (tensor.type == GGML_TYPE_F32) { f32_data = (float *) tensor.data; } else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) { throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type))); } else { llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread); f32_data = (float *) f32_conv_buf.addr; } printf("quantizing .. "); fflush(stdout); work.resize(nelements * 4); // upper bound on size new_data = work.addr; std::vector hist_cur(1 << 4, 0); int chunk_size = 32 * 512; const int nchunk = (nelements + chunk_size - 1)/chunk_size; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; if (nthread_use < 2) { new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data()); } else { size_t counter = 0; new_size = 0; auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () { std::vector local_hist; size_t local_size = 0; while (true) { std::unique_lock lock(mutex); size_t first = counter; counter += chunk_size; if (first >= nelements) { if (!local_hist.empty()) { for (int j=0; j %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); int64_t tot_count = 0; for (size_t i = 0; i < hist_cur.size(); i++) { hist_all[i] += hist_cur[i]; tot_count += hist_cur[i]; } if (tot_count > 0) { for (size_t i = 0; i < hist_cur.size(); i++) { printf("%5.3f ", hist_cur[i] / float(nelements)); } } printf("\n"); } total_size_org += tensor.size; total_size_new += new_size; file_saver.write_tensor(tensor, new_type, new_data, new_size); } printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); { int64_t sum_all = 0; for (size_t i = 0; i < hist_all.size(); i++) { sum_all += hist_all[i]; } if (sum_all > 0) { printf("%s: hist: ", __func__); for (size_t i = 0; i < hist_all.size(); i++) { printf("%5.3f ", hist_all[i] / float(sum_all)); } printf("\n"); } } } // // interface implementation // struct llama_context * llama_init_from_file( const char * path_model, struct llama_context_params params) { ggml_time_init(); llama_context * ctx = new llama_context; if (params.seed < 0) { params.seed = time(NULL); } unsigned cur_percentage = 0; if (params.progress_callback == NULL) { params.progress_callback_user_data = &cur_percentage; params.progress_callback = [](float progress, void * ctx) { unsigned * cur_percentage_p = (unsigned *) ctx; unsigned percentage = (unsigned) (100 * progress); while (percentage > *cur_percentage_p) { *cur_percentage_p = percentage; fprintf(stderr, "."); fflush(stderr); if (percentage >= 100) { fprintf(stderr, "\n"); } } }; } ctx->rng = std::mt19937(params.seed); ctx->logits_all = params.logits_all; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, params.main_gpu, params.tensor_split, memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { fprintf(stderr, "%s: failed to load model\n", __func__); llama_free(ctx); return nullptr; } // reserve memory for context buffers if (!params.vocab_only) { if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; } { const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v); fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } const auto & hparams = ctx->model.hparams; // resized during inference if (params.logits_all) { ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); } else { ctx->logits.reserve(hparams.n_vocab); } if (params.embedding){ ctx->embedding.resize(hparams.n_embd); } ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type)); ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type)); ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type)); } #ifdef GGML_USE_METAL if (params.n_gpu_layers > 0) { // this allocates all Metal resources and memory buffers ctx->ctx_metal = ggml_metal_init(); void *data_ptr = NULL; size_t data_size = 0; if (params.use_mmap) { data_ptr = ctx->model.mapping->addr; data_size= ctx->model.mapping->size; } else { data_ptr = ggml_get_mem_buffer(ctx->model.ctx); data_size= ggml_get_mem_size(ctx->model.ctx); } #define LLAMA_METAL_CHECK_BUF(result) \ if (!(result)) { \ fprintf(stderr, "%s: failed to add buffer\n", __func__); \ llama_free(ctx); \ return NULL; \ } LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size)); #undef LLAMA_METAL_CHECK_BUF } #endif return ctx; } void llama_free(struct llama_context * ctx) { delete ctx; } int llama_model_quantize( const char * fname_inp, const char * fname_out, const llama_model_quantize_params *params) { try { llama_model_quantize_internal(fname_inp, fname_out, params); return 0; } catch (const std::exception & err) { fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what()); return 1; } } int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); auto & model = ctx->model; const int64_t t_start_lora_us = ggml_time_us(); auto fin = std::ifstream(path_lora, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora); return 1; } // verify magic and version { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != LLAMA_FILE_MAGIC_GGLA) { fprintf(stderr, "%s: bad file magic\n", __func__); return 1; } uint32_t format_version; fin.read((char *) &format_version, sizeof(format_version)); if (format_version != 1) { fprintf(stderr, "%s: unsupported file version\n", __func__ ); return 1; } } int32_t lora_r; int32_t lora_alpha; fin.read((char *) &lora_r, sizeof(lora_r)); fin.read((char *) &lora_alpha, sizeof(lora_alpha)); float scaling = (float)lora_alpha / (float)lora_r; fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); // create a temporary ggml context to store the lora tensors // todo: calculate size from biggest possible tensor std::vector lora_buf(1024ull * 1024ull * 1024ull); struct ggml_init_params params; params.mem_size = lora_buf.size(); params.mem_buffer = lora_buf.data(); params.no_alloc = false; ggml_context * lora_ctx = ggml_init(params); std::unordered_map lora_tensors; // create a name -> tensor map of the model to accelerate lookups std::unordered_map model_tensors; for (auto & kv: model.tensors_by_name) { model_tensors.insert(kv); } // load base model std::unique_ptr model_loader; ggml_context * base_ctx = NULL; llama_buffer base_buf; if (path_base_model) { fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model); model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false)); size_t ctx_size; size_t mmapped_size; model_loader->calc_sizes(&ctx_size, &mmapped_size); base_buf.resize(ctx_size); ggml_init_params base_params; base_params.mem_size = base_buf.size; base_params.mem_buffer = base_buf.addr; base_params.no_alloc = model_loader->use_mmap; base_ctx = ggml_init(base_params); model_loader->ggml_ctx = base_ctx; // maybe this should in llama_model_loader if (model_loader->use_mmap) { model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0)); } } // read tensors and apply bool warned = false; int n_tensors = 0; while (true) { int32_t n_dims; int32_t length; int32_t ftype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ftype), sizeof(ftype)); if (fin.eof()) { break; } int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); } std::string name; { char buf[1024]; fin.read(buf, length); name = std::string(buf, length); } // check for lora suffix and get the type of tensor const std::string lora_suffix = ".lora"; size_t pos = name.rfind(lora_suffix); if (pos == std::string::npos) { fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); return 1; } std::string lora_type = name.substr(pos + lora_suffix.length()); std::string base_name = name; base_name.erase(pos); // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str()); if (model_tensors.find(base_name) == model_tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); return 1; } // create ggml tensor ggml_type wtype; switch (ftype) { case 0: wtype = GGML_TYPE_F32; break; case 1: wtype = GGML_TYPE_F16; break; default: { fprintf(stderr, "%s: invalid tensor data type '%d'\n", __func__, ftype); return false; } } ggml_tensor* lora_tensor; if (n_dims == 2) { lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]); } else { fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims); return 1; } // load tensor data size_t offset = fin.tellg(); size_t tensor_data_size = ggml_nbytes(lora_tensor); offset = (offset + 31) & -32; fin.seekg(offset); fin.read((char*)lora_tensor->data, tensor_data_size); lora_tensors[name] = lora_tensor; // check if we have both A and B tensors and apply if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() && lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) { ggml_tensor * dest_t = model_tensors[base_name]; ggml_tensor * base_t; if (model_loader) { // load from base model if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) { fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); return 1; } size_t idx = model_loader->tensors_map.name_to_idx[base_name]; llama_load_tensor & lt = model_loader->tensors_map.tensors[idx]; base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU); lt.data = (uint8_t *) lt.ggml_tensor->data; model_loader->load_data_for(lt); lt.ggml_tensor->data = lt.data; } else { base_t = dest_t; } if (ggml_is_quantized(base_t->type)) { if (!warned) { fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, " "use a f16 or f32 base model with --lora-base\n", __func__); warned = true; } } ggml_tensor * loraA = lora_tensors[base_name + ".loraA"]; ggml_tensor * loraB = lora_tensors[base_name + ".loraB"]; if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); return 1; } // w = w + BA*s ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB); if (scaling != 1.0f) { ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling); BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor); } ggml_tensor * r; if (base_t == dest_t) { r = ggml_add_inplace(lora_ctx, dest_t, BA); } else { r = ggml_add(lora_ctx, base_t, BA); r = ggml_cpy(lora_ctx, r, dest_t); } struct ggml_cgraph gf = ggml_build_forward(r); gf.n_threads = n_threads; ggml_graph_compute(lora_ctx, &gf); // we won't need these tensors again, reset the context to save memory ggml_free(lora_ctx); lora_ctx = ggml_init(params); lora_tensors.clear(); n_tensors++; if (n_tensors % 4 == 0) { fprintf(stderr, "."); } } } // TODO: this should be in a destructor, it will leak on failure ggml_free(lora_ctx); if (base_ctx) { ggml_free(base_ctx); } const int64_t t_lora_us = ggml_time_us() - t_start_lora_us; fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0); return 0; } int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { try { return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads); } catch (const std::exception & err) { fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; } } int llama_get_kv_cache_token_count(const struct llama_context * ctx) { return ctx->model.kv_self.n; } #define LLAMA_MAX_RNG_STATE (64*1024) void llama_set_rng_seed(struct llama_context * ctx, int seed) { if (seed < 0) { seed = time(NULL); } ctx->rng.seed(seed); } // Returns the *maximum* size of the state size_t llama_get_state_size(const struct llama_context * ctx) { // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. // for reference, std::mt19937(1337) serializes to 6701 bytes. const size_t s_rng_size = sizeof(size_t); const size_t s_rng = LLAMA_MAX_RNG_STATE; const size_t s_logits_capacity = sizeof(size_t); const size_t s_logits_size = sizeof(size_t); const size_t s_logits = ctx->logits.capacity() * sizeof(float); const size_t s_embedding_size = sizeof(size_t); const size_t s_embedding = ctx->embedding.size() * sizeof(float); const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); const size_t s_kv = ctx->model.kv_self.buf.size; const size_t s_total = ( + s_rng_size + s_rng + s_logits_capacity + s_logits_size + s_logits + s_embedding_size + s_embedding + s_kv_size + s_kv_ntok + s_kv ); return s_total; } // Copies the state to the specified destination address size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { uint8_t * out = dst; // copy rng { std::stringstream rng_ss; rng_ss << ctx->rng; const size_t rng_size = rng_ss.str().size(); char rng_buf[LLAMA_MAX_RNG_STATE]; memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE); memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE; } // copy logits { const size_t logits_cap = ctx->logits.capacity(); const size_t logits_size = ctx->logits.size(); memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap); memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size); if (logits_size) { memcpy(out, ctx->logits.data(), logits_size * sizeof(float)); } out += logits_cap * sizeof(float); } // copy embeddings { const size_t embedding_size = ctx->embedding.size(); memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size); if (embedding_size) { memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float)); out += embedding_size * sizeof(float); } } // copy kv cache { const auto & kv_self = ctx->model.kv_self; const auto & hparams = ctx->model.hparams; const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd; const int n_ctx = hparams.n_ctx; const size_t kv_size = kv_self.buf.size; const int kv_ntok = llama_get_kv_cache_token_count(ctx); memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); if (kv_size) { const size_t elt_size = ggml_element_size(kv_self.k); char buffer[4096]; ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true }); ggml_cgraph gf{}; gf.n_threads = 1; ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); kout3d->data = out; out += ggml_nbytes(kout3d); ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); vout3d->data = out; out += ggml_nbytes(vout3d); ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k, n_embd, kv_ntok, n_layer, elt_size*n_embd, elt_size*n_embd*n_ctx, 0); ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v, kv_ntok, n_embd, n_layer, elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d)); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d)); ggml_graph_compute(cpy_ctx, &gf); ggml_free(cpy_ctx); } } const size_t written = out - dst; const size_t max_size = llama_get_state_size(ctx); LLAMA_ASSERT(written <= max_size); return written; } // Sets the state reading from the specified source address size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { uint8_t * inp = src; // set rng { size_t rng_size; char rng_buf[LLAMA_MAX_RNG_STATE]; memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size); memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE; std::stringstream rng_ss; rng_ss.str(std::string(&rng_buf[0], rng_size)); rng_ss >> ctx->rng; LLAMA_ASSERT(rng_ss.fail() == false); } // set logits { size_t logits_cap; size_t logits_size; memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap); memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size); LLAMA_ASSERT(ctx->logits.capacity() == logits_cap); if (logits_size) { ctx->logits.resize(logits_size); memcpy(ctx->logits.data(), inp, logits_size * sizeof(float)); } inp += logits_cap * sizeof(float); } // set embeddings { size_t embedding_size; memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size); LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size); if (embedding_size) { memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float)); inp += embedding_size * sizeof(float); } } // set kv cache { const auto & kv_self = ctx->model.kv_self; const auto & hparams = ctx->model.hparams; const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd; const int n_ctx = hparams.n_ctx; size_t kv_size; int kv_ntok; memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok); if (kv_size) { LLAMA_ASSERT(kv_self.buf.size == kv_size); const size_t elt_size = ggml_element_size(kv_self.k); char buffer[4096]; ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true }); ggml_cgraph gf{}; gf.n_threads = 1; ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); kin3d->data = (void *) inp; inp += ggml_nbytes(kin3d); ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer); vin3d->data = (void *) inp; inp += ggml_nbytes(vin3d); ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k, n_embd, kv_ntok, n_layer, elt_size*n_embd, elt_size*n_embd*n_ctx, 0); ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v, kv_ntok, n_embd, n_layer, elt_size*n_ctx, elt_size*n_ctx*n_embd, 0); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d)); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d)); ggml_graph_compute(cpy_ctx, &gf); ggml_free(cpy_ctx); } ctx->model.kv_self.n = kv_ntok; } const size_t nread = inp - src; const size_t max_size = llama_get_state_size(ctx); LLAMA_ASSERT(nread <= max_size); return nread; } bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { llama_file file(path_session, "rb"); // sanity checks { const uint32_t magic = file.read_u32(); const uint32_t version = file.read_u32(); if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); return false; } llama_hparams session_hparams; file.read_raw(&session_hparams, sizeof(llama_hparams)); if (session_hparams != ctx->model.hparams) { fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__); return false; } } // load the prompt { const uint32_t n_token_count = file.read_u32(); if (n_token_count > n_token_capacity) { fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); return false; } file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); *n_token_count_out = n_token_count; } // restore the context state { const size_t n_state_size_cur = file.size - file.tell(); const size_t n_state_size_max = llama_get_state_size(ctx); if (n_state_size_cur > n_state_size_max) { fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur); return false; } std::vector state_data(n_state_size_max); file.read_raw(state_data.data(), n_state_size_cur); llama_set_state_data(ctx, state_data.data()); } return true; } bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { llama_file file(path_session, "wb"); file.write_u32(LLAMA_SESSION_MAGIC); file.write_u32(LLAMA_SESSION_VERSION); file.write_raw(&ctx->model.hparams, sizeof(llama_hparams)); // save the prompt file.write_u32((uint32_t) n_token_count); file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state { const size_t n_state_size_max = llama_get_state_size(ctx); std::vector state_data(n_state_size_max); const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data()); file.write_raw(state_data.data(), n_state_size_cur); } return true; } int llama_eval( struct llama_context * ctx, const llama_token * tokens, int n_tokens, int n_past, int n_threads) { if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads, nullptr)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } // get a more accurate load time, upon first eval // TODO: fix this if (!ctx->has_evaluated_once) { ctx->t_load_us = ggml_time_us() - ctx->t_start_us; ctx->has_evaluated_once = true; } return 0; } int llama_eval_export(struct llama_context * ctx, const char * fname) { const int n_batch = 1; const int n_ctx = 512 - n_batch; const std::vector tmp(n_batch, llama_token_bos()); if (!llama_eval_internal(*ctx, tmp.data(), tmp.size(), n_ctx, 1, fname)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } return 0; } int llama_tokenize( struct llama_context * ctx, const char * text, llama_token * tokens, int n_max_tokens, bool add_bos) { auto res = llama_tokenize(ctx->vocab, text, add_bos); if (n_max_tokens < (int) res.size()) { fprintf(stderr, "%s: too many tokens\n", __func__); return -((int) res.size()); } for (size_t i = 0; i < res.size(); i++) { tokens[i] = res[i]; } return res.size(); } int llama_n_vocab(const struct llama_context * ctx) { return ctx->vocab.id_to_token.size(); } int llama_n_ctx(const struct llama_context * ctx) { return ctx->model.hparams.n_ctx; } int llama_n_embd(const struct llama_context * ctx) { return ctx->model.hparams.n_embd; } int llama_get_vocab( const struct llama_context * ctx, const char * * strings, float * scores, int capacity) { int n = std::min(capacity, (int) ctx->vocab.id_to_token.size()); for (int i = 0; ivocab.id_to_token[i].tok.c_str(); scores[i] = ctx->vocab.id_to_token[i].score; } return n; } float * llama_get_logits(struct llama_context * ctx) { return ctx->logits.data(); } float * llama_get_embeddings(struct llama_context * ctx) { return ctx->embedding.data(); } const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) { if (token >= llama_n_vocab(ctx)) { return nullptr; } return ctx->vocab.id_to_token[token].tok.c_str(); } llama_token llama_token_bos() { return 1; } llama_token llama_token_eos() { return 2; } llama_token llama_token_nl() { return 13; } void llama_print_timings(struct llama_context * ctx) { const int64_t t_end_us = ggml_time_us(); const int32_t n_sample = std::max(1, ctx->n_sample); const int32_t n_eval = std::max(1, ctx->n_eval); const int32_t n_p_eval = std::max(1, ctx->n_p_eval); fprintf(stderr, "\n"); fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0); fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample); fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval); fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval); fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0); } void llama_reset_timings(struct llama_context * ctx) { ctx->t_start_us = ggml_time_us(); ctx->t_sample_us = ctx->n_sample = 0; ctx->t_eval_us = ctx->n_eval = 0; ctx->t_p_eval_us = ctx->n_p_eval = 0; } const char * llama_print_system_info(void) { static std::string s; s = ""; s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | "; s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; return s.c_str(); } // For internal test use std::vector>& llama_internal_get_tensor_map(struct llama_context * ctx) { return ctx->model.tensors_by_name; }