Spaces:
Running
Running
Upload 2 files
Browse files- app3.py +126 -0
- requirements.txt +0 -0
app3.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##STREAMLINK CODE
|
2 |
+
import cv2
|
3 |
+
import streamlink
|
4 |
+
import streamlit as st
|
5 |
+
import time
|
6 |
+
import tempfile
|
7 |
+
import base64
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from openai import OpenAI
|
11 |
+
import assemblyai as aai
|
12 |
+
|
13 |
+
# Load environment variables
|
14 |
+
load_dotenv()
|
15 |
+
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
|
16 |
+
OpenAI.api_key = os.getenv("OPENAI_API_KEY")
|
17 |
+
client = OpenAI()
|
18 |
+
|
19 |
+
def extract_recent_frames(video_url, output_folder, duration=10, frames_per_second=1):
|
20 |
+
streams = streamlink.streams(video_url)
|
21 |
+
|
22 |
+
if not streams:
|
23 |
+
st.error("Error: Unable to retrieve streams. Make sure the YouTube video URL is valid.")
|
24 |
+
return
|
25 |
+
|
26 |
+
stream_url = streams['best'].url
|
27 |
+
|
28 |
+
cap = cv2.VideoCapture(stream_url)
|
29 |
+
|
30 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
31 |
+
total_frames = int(fps * duration)
|
32 |
+
frame_interval = int(fps / frames_per_second)
|
33 |
+
|
34 |
+
frame_count = 0
|
35 |
+
start_time = time.time()
|
36 |
+
|
37 |
+
extracted_frames = []
|
38 |
+
|
39 |
+
while cap.isOpened():
|
40 |
+
ret, frame = cap.read()
|
41 |
+
if not ret:
|
42 |
+
st.error("Error: Couldn't read frame.")
|
43 |
+
break
|
44 |
+
|
45 |
+
elapsed_time = time.time() - start_time
|
46 |
+
if frame_count % frame_interval == 0 and elapsed_time <= duration:
|
47 |
+
# Convert frame to base64
|
48 |
+
_, buffer = cv2.imencode(".jpg", frame)
|
49 |
+
base64_frame = base64.b64encode(buffer).decode("utf-8")
|
50 |
+
extracted_frames.append(base64_frame)
|
51 |
+
|
52 |
+
frame_count += 1
|
53 |
+
|
54 |
+
if elapsed_time > duration:
|
55 |
+
break
|
56 |
+
|
57 |
+
cap.release()
|
58 |
+
|
59 |
+
return extracted_frames
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
def main():
|
64 |
+
st.title("Insightly Live Video Analysis")
|
65 |
+
|
66 |
+
youtube_video_url = st.text_input("Enter YouTube Video URL:")
|
67 |
+
duration = st.slider("Select Duration (seconds):", min_value=1, max_value=60, value=10)
|
68 |
+
frames_per_second = st.slider("Select Frames per Second:", min_value=1, max_value=10, value=1)
|
69 |
+
|
70 |
+
if st.button("Extract Frames"):
|
71 |
+
st.info("Extracting frames. Please wait...")
|
72 |
+
extracted_frames = extract_recent_frames(youtube_video_url, "temp_frames", duration, frames_per_second)
|
73 |
+
|
74 |
+
if extracted_frames:
|
75 |
+
st.success("Frames extracted successfully!")
|
76 |
+
|
77 |
+
# Display frames in a grid format with frame description on click
|
78 |
+
display_frame_grid(extracted_frames)
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
else:
|
83 |
+
st.error("Failed to extract frames.")
|
84 |
+
|
85 |
+
#####################33
|
86 |
+
def generate_description(base64_frames):
|
87 |
+
try:
|
88 |
+
prompt_messages = [
|
89 |
+
{
|
90 |
+
"role": "user",
|
91 |
+
"content": [
|
92 |
+
"1. Generate a description for this sequence of video frames in about 90 words. Return the following: 1. List of objects in the video 2. Any restrictive content or sensitive content and if so which frame.",
|
93 |
+
*map(lambda x: {"image": x, "resize": 428}, base64_frames[0::30]),
|
94 |
+
],
|
95 |
+
},
|
96 |
+
]
|
97 |
+
response = client.chat.completions.create(
|
98 |
+
model="gpt-4-vision-preview",
|
99 |
+
messages=prompt_messages,
|
100 |
+
max_tokens=3000,
|
101 |
+
)
|
102 |
+
return response.choices[0].message.content
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error in generate_description: {e}")
|
105 |
+
return None
|
106 |
+
|
107 |
+
#########################################3333
|
108 |
+
|
109 |
+
def display_frame_grid(extracted_frames):
|
110 |
+
cols_per_row = 3
|
111 |
+
n_frames = len(extracted_frames)
|
112 |
+
for idx in range(0, n_frames, cols_per_row):
|
113 |
+
cols = st.columns(cols_per_row)
|
114 |
+
for col_index in range(cols_per_row):
|
115 |
+
frame_idx = idx + col_index
|
116 |
+
if frame_idx < n_frames:
|
117 |
+
with cols[col_index]:
|
118 |
+
# Decode base64 and display the frame
|
119 |
+
decoded_frame = base64.b64decode(extracted_frames[frame_idx])
|
120 |
+
st.image(decoded_frame, channels="BGR", caption=f'Frame {frame_idx + 1}', use_column_width=True, output_format="JPEG")
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
main()
|
requirements.txt
ADDED
Binary file (3.33 kB). View file
|
|