File size: 10,243 Bytes
4f234f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import dataclasses
from enum import auto, Enum
from typing import List, Tuple
import os


class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()
    MPT = auto()
    PLAIN = auto()
    LLAMA_2 = auto()
    MISTRAL = auto()

# video_helper_map = {
#     # 'Chips Making Deal Video' : {'path' : '/data/videos/ChipmakingDeal/sub-videos/', 'prefix' : 'ChipmakingDeal_split'},
#     'Keynote 2023' : {'path' : '/data/videos/PatsKeynote23/sub-videos/', 'prefix' : 'keynotes23_split'},
#     'Intel Behind the Bell' : {'path' : '/data/videos/BehindTheBell/sub-videos/', 'prefix' : 'Behind the Bell Intel_split'},
#     'CEOs Talk' : {'path' : '/data/videos/SamPatTalkAI/sub-videos/', 'prefix' : 'Sam Altman and Pat Gelsinger Talk Artificial Intelligence_split'},
#     'Chips Act Funding Announcement' : {'path' : '/data/videos/IntelChipsFundingAnnounce/sub-videos/', 'prefix' : 'Intel Celebrates CHIPS and Science Act Direct Funding Announcement (Replay)_split'},
#     '22nm-Chip Technology' : {'path' : '/data/videos/MarkBohrExplains22nm/sub-videos/', 'prefix' : 'Video Animation Mark Bohr Gets Small 22nm Explained  Intel_split'},
#     '14nm-Chip Technology' : {'path' : '/data/videos/MarkBohrExplains14nm/sub-videos/', 'prefix' : 'Explanation of Intels 14nm Process_split'},    
# }

video_helper_map = {
    # 'Chips Making Deal Video' : {'path' : '/data/videos/ChipmakingDeal/sub-videos/', 'prefix' : 'ChipmakingDeal_split'},
    'Innovation-2023' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/PatsKeynote23/sub-videos/', 'prefix' : 'keynotes23_split'},
    'Behind-the-Bell-Intel' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/BehindTheBell/sub-videos/', 'prefix' : 'Behind the Bell Intel_split'},
    'Foundry-Connect' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/SamPatTalkAI/sub-videos/', 'prefix' : 'Sam Altman and Pat Gelsinger Talk Artificial Intelligence_split'},
    'Chips Act Funding Announcement' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/IntelChipsFundingAnnounce/sub-videos/', 'prefix' : 'Intel Celebrates CHIPS and Science Act Direct Funding Announcement (Replay)_split'},
    '22nm-transistor-animation' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/MarkBohrExplains22nm/sub-videos/', 'prefix' : 'Video Animation Mark Bohr Gets Small 22nm Explained  Intel_split'},
    '14nm-transistor-animation' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/MarkBohrExplains14nm/sub-videos/', 'prefix' : 'Explanation of Intels 14nm Process_split'},    
}

@dataclasses.dataclass
class Conversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "\n"
    sep2: str = None
    version: str = "Unknown"
    path_to_img: str = None
    video_title: str = None
    caption: str = None

    skip_next: bool = False

    def _template_caption(self):
        out = ""
        if self.caption is not None:
            out = f"The caption associated with the image is '{self.caption}'. "
        return out
    
    def get_prompt(self):
        messages = self.messages
        if len(messages) > 0 and messages[1][1] is not None and "<image>" not in messages[0][1]:
            # if there is a history message and <image> is not yet in the first message of user
            # then add <image>\n to the beginning
            messages = self.messages.copy()
            init_role, init_msg = messages[0].copy()
            messages[0] = (init_role, "<image>\n" + self._template_caption() + init_msg)

        if len(messages) > 1 and messages[1][1] is None:
            #Need to do RAG. prompt is the query only
            ret = messages[0][1]
        else:
            if self.sep_style == SeparatorStyle.SINGLE:
                ret = ""
                for role, message in messages:
                    if message:
                        ret += role + ": " + message + self.sep
                    else:
                        ret += role + ":"
            elif self.sep_style == SeparatorStyle.LLAMA_2:
                wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
                wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
                ret = ""

                for i, (role, message) in enumerate(messages):
                    if i == 0:
                        assert message, "first message should not be none"
                        assert role == self.roles[0], "first message should come from user"
                    if message:
                        if type(message) is tuple:
                            message, _, _ = message
                        if i == 0: message = wrap_sys(self.system) + message
                        if i % 2 == 0:
                            message = wrap_inst(message)
                            ret += self.sep + message
                        else:
                            ret += " " + message + " " + self.sep2
                    else:
                        ret += ""
                ret = ret.lstrip(self.sep)
            else:
                raise ValueError(f"Invalid style: {self.sep_style}")

        return ret

    def append_message(self, role, message):
        self.messages.append([role, message])

    def get_images(self, return_pil=False):
        images = []
        if self.path_to_img is not None:
            path_to_image = self.path_to_img
            images.append(path_to_image)
            # import base64
            # from io import BytesIO
            # from PIL import Image
            # image = Image.open(path_to_image)
            # max_hw, min_hw = max(image.size), min(image.size)
            # aspect_ratio = max_hw / min_hw
            # max_len, min_len = 800, 400
            # shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
            # longest_edge = int(shortest_edge * aspect_ratio)
            # W, H = image.size
            # if longest_edge != max(image.size):
            #     if H > W:
            #         H, W = longest_edge, shortest_edge
            #     else:
            #         H, W = shortest_edge, longest_edge
            #     image = image.resize((W, H))
            # if return_pil:
            #     images.append(image)
            # else:
            #     # buffered = BytesIO()
            #     # # image.save(buffered, format="PNG")
            #     # img_b64_str = base64.b64encode(buffered.getvalue()).decode()
            #     images.append(path_to_image)
        return images

    def to_gradio_chatbot(self):
        ret = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                if type(msg) is tuple:
                    import base64
                    from io import BytesIO
                    msg, image, image_process_mode = msg
                    max_hw, min_hw = max(image.size), min(image.size)
                    aspect_ratio = max_hw / min_hw
                    max_len, min_len = 800, 400
                    shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
                    longest_edge = int(shortest_edge * aspect_ratio)
                    W, H = image.size
                    if H > W:
                        H, W = longest_edge, shortest_edge
                    else:
                        H, W = shortest_edge, longest_edge
                    image = image.resize((W, H))
                    buffered = BytesIO()
                    image.save(buffered, format="JPEG")
                    img_b64_str = base64.b64encode(buffered.getvalue()).decode()
                    img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
                    msg = img_str + msg.replace('<image>', '').strip()
                    ret.append([msg, None])
                else:
                    ret.append([msg, None])
            else:
                ret[-1][-1] = msg
        return ret

    def copy(self):
        return Conversation(
            system=self.system,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            version=self.version,)

    def dict(self):
        return {
            "system": self.system,
            "roles": self.roles,
            "messages": self.messages,
            "offset": self.offset,
            "sep": self.sep,
            "sep2": self.sep2,
            "path_to_img": self.path_to_img,
            "video_title" : self.video_title,
            "caption" : self.caption,
        }
    def get_path_to_subvideos(self):
        print(f"self.video_title {self.video_title}")
        print(f"self.path_to_image {self.path_to_img}")
        return None
        if self.video_title is not None and self.path_to_img is not None:
            info = video_helper_map[self.video_title]
            path = info['path']
            prefix = info['prefix']
            vid_index = self.path_to_img.split('/')[-1]
            vid_index = vid_index.split('_')[-1]
            vid_index = vid_index.replace('.jpg', '')
            ret = f"{prefix}{vid_index}.mp4"
            ret = os.path.join(path, ret)
            return ret
        elif self.path_to_img is not None:
            return self.path_to_img
        return None

multimodal_rag = Conversation(
    system="",
    roles=("USER", "ASSISTANT"),
    messages=(),
    offset=0,
    sep_style=SeparatorStyle.SINGLE,
    sep="\n",
    path_to_img=None,
    video_title=None,
    caption=None,
)

conv_mistral_instruct = Conversation(
    system="",
    roles=("USER", "ASSISTANT"),
    version="llama_v2",
    messages=(),
    offset=0,
    sep_style=SeparatorStyle.LLAMA_2,
    sep="",
    sep2="</s>",
    path_to_img=None,
    video_title=None,
    caption=None,
)



default_conversation = multimodal_rag
conv_templates = {
    "default": multimodal_rag,
    "multimodal_rag" : multimodal_rag,
    "llavamed_rag" : conv_mistral_instruct,
}


if __name__ == "__main__":
    print(default_conversation.get_prompt())