wburch commited on
Commit
17277f9
1 Parent(s): 4c94107

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -24
README.md CHANGED
@@ -55,7 +55,7 @@ pinned: false
55
  </a>
56
  <div class="lg:col-span-3">
57
  <p class="mb-2">
58
- Intel optimizes the most widely adopted and innovative AI software
59
  tools, frameworks, and libraries for Intel® architecture. Whether
60
  you are computing locally or deploying AI applications on a massive
61
  scale, your organization can achieve peak performance with AI
@@ -64,42 +64,55 @@ pinned: false
64
  <p class="mb-2">
65
  Intel’s engineering collaboration with Hugging Face offers state-of-the-art hardware and software acceleration to train, fine-tune and predict with Transformers.
66
  </p>
67
- <p>
68
- Useful Resources:
69
- </p>
70
  <ul>
71
- <li class="ml-6"><a href="https://huggingface.co/hardware/intel" class="underline" data-ga-category="intel-org" data-ga-action="clicked partner page" data-ga-label="partner page">- Intel AI + Hugging Face partner page</a></li>
72
- <li class="ml-6"><a href="https://github.com/IntelAI" class="underline" data-ga-category="intel-org" data-ga-action="clicked intel ai github" data-ga-label="intel ai github">- Intel AI GitHub</a></li>
73
- <li class="ml-6"><a href="https://www.intel.com/content/www/us/en/developer/partner/hugging-face.html" class="underline" data-ga-category="intel-org" data-ga-action="clicked intel partner page" data-ga-label="intel partner page">- Developer Resources from Intel and Hugging Face</a></li>
74
  </ul>
 
75
  </div>
76
  <div class="lg:col-span-3">
 
 
77
  <p class="mb-2">
78
- To get started with Intel® hardware and software optimizations, download and install the Optimum-Intel®
79
- and Intel® Extension for Transformers libraries with the following commands:
80
  </p>
81
- <pre><code>
82
- $ python -m pip install "optimum-intel[extras]"@git+https://github.com/huggingface/optimum-intel.git
83
- $ python -m pip install intel-extension-for-transformers
84
- </code></pre>
85
- <p>
86
- <i>For additional information on these two libraries including installation, features, and usage, see the two links below.</i>
 
 
87
  </p>
 
88
  <p class="mb-2">
89
- Next, find your desired model (and dataset) by searching in the search box at the top-left of Hugging Face’s website.
90
- Add “intel” to your search to narrow your search to Intel®-pretrained models.
91
  </p>
 
 
 
 
 
 
92
  <p class="mb-2">
93
  On the model’s page (called a “Model Card”) you will find description and usage information, an embedded
94
  inferencing demo, and the associated dataset. In the upper-right of your screen, click “Use in Transformers”
95
  for helpful code hints on how to import the model to your own workspace with an established Hugging Face pipeline and tokenizer.
96
  </p>
97
- <p>
98
- Library Source and Documentation:
99
- </p>
100
- <ul>
101
- <li class="ml-6"><a href="https://github.com/huggingface/optimum-intel" class="underline" data-ga-category="intel-org" data-ga-action="clicked optimum intel" data-ga-label="optimum intel">- 🤗 Optimum-Intel® library</a></li>
102
- <li class="ml-6"><a href="https://github.com/intel/intel-extension-for-transformers" class="underline" data-ga-category="intel-org" data-ga-action="clicked intel extension for transformers" data-ga-label="intel extension for transformers">- Intel® Extension for Transformers</a></li>
103
- </ul>
 
 
 
104
  </div>
105
  </div>
 
55
  </a>
56
  <div class="lg:col-span-3">
57
  <p class="mb-2">
58
+ Intel optimizes widely adopted and innovative AI software
59
  tools, frameworks, and libraries for Intel® architecture. Whether
60
  you are computing locally or deploying AI applications on a massive
61
  scale, your organization can achieve peak performance with AI
 
64
  <p class="mb-2">
65
  Intel’s engineering collaboration with Hugging Face offers state-of-the-art hardware and software acceleration to train, fine-tune and predict with Transformers.
66
  </p>
67
+ <h3>Useful Resources:</h3>
 
 
68
  <ul>
69
+ <li class="ml-6"><a href="https://huggingface.co/hardware/intel" class="underline" data-ga-category="intel-org" data-ga-action="clicked partner page" data-ga-label="partner page">Intel AI + Hugging Face partner page</a></li>
70
+ <li class="ml-6"><a href="https://github.com/IntelAI" class="underline" data-ga-category="intel-org" data-ga-action="clicked intel ai github" data-ga-label="intel ai github">Intel AI GitHub</a></li>
71
+ <li class="ml-6"><a href="https://www.intel.com/content/www/us/en/developer/partner/hugging-face.html" class="underline" data-ga-category="intel-org" data-ga-action="clicked intel partner page" data-ga-label="intel partner page">Developer Resources from Intel and Hugging Face</a></li>
72
  </ul>
73
+ <p>&nbsp;</p>
74
  </div>
75
  <div class="lg:col-span-3">
76
+ <h1>First Steps</h1>
77
+ <h3>Intel acceleration libraries</h3>
78
  <p class="mb-2">
79
+ To get started with Intel hardware and software optimizations, download and install the Optimum Intel
80
+ and Intel® Extension for Transformers libraries. The source, installation, and usage for each library can be found here:
81
  </p>
82
+ <ul>
83
+ <li class="ml-6"><a href="https://github.com/huggingface/optimum-intel" class="underline" data-ga-category="intel-org" data-ga-action="clicked optimum intel" data-ga-label="optimum intel">🤗 Optimum Intel library</a></li>
84
+ <li class="ml-6"><a href="https://github.com/intel/intel-extension-for-transformers" class="underline" data-ga-category="intel-org" data-ga-action="clicked intel extension for transformers" data-ga-label="intel extension for transformers">Intel® Extension for Transformers</a></li>
85
+ </ul>
86
+ <p class="mb-2">
87
+ The Optimum Intel library provides primarily hardware acceleration, while the Intel® Extension
88
+ for Transformers is focused more on software accleration. Both should be present to achieve ideal
89
+ performance and productivity gains in transfer learning and fine-tuning with Hugging Face.
90
  </p>
91
+ <h3>Find your model</h3>
92
  <p class="mb-2">
93
+ Next, find your desired model (and dataset) by using the search box at the top-left of Hugging Face’s website.
94
+ Add “intel” to your search to narrow your search to models pretrained by Intel.
95
  </p>
96
+ <img
97
+ alt=""
98
+ src="https://huggingface.co/spaces/Intel/README/resolve/main/hf-model_search.png"
99
+ style="margin:auto;transform:scale(0.8);"
100
+ />
101
+ <h3>Demo, dataset, and quick-start commands</h3>
102
  <p class="mb-2">
103
  On the model’s page (called a “Model Card”) you will find description and usage information, an embedded
104
  inferencing demo, and the associated dataset. In the upper-right of your screen, click “Use in Transformers”
105
  for helpful code hints on how to import the model to your own workspace with an established Hugging Face pipeline and tokenizer.
106
  </p>
107
+ <img
108
+ alt=""
109
+ src="https://huggingface.co/spaces/Intel/README/resolve/main/hf-use_transformers.png"
110
+ style="margin:auto;transform:scale(0.8);"
111
+ />
112
+ <img
113
+ alt=""
114
+ src="https://huggingface.co/spaces/Intel/README/resolve/main/hf-quickstart.png"
115
+ style="margin:auto;transform:scale(0.8);"
116
+ />
117
  </div>
118
  </div>