Spaces:
Runtime error
Runtime error
from optimum.habana.diffusers import GaudiDDIMScheduler, GaudiStableDiffusionLDM3DPipeline | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import base64 | |
from io import BytesIO | |
from tempfile import NamedTemporaryFile | |
from pathlib import Path | |
Path("tmp").mkdir(exist_ok=True) | |
device = "hpu" | |
print(f"Device is {device}") | |
model_name = "Intel/ldm3d-pano" | |
scheduler = GaudiDDIMScheduler.from_pretrained(model_name, subfolder="scheduler") | |
pipe = GaudiStableDiffusionLDM3DPipeline.from_pretrained( model_name, | |
scheduler=scheduler, | |
use_habana=True, | |
use_hpu_graphs=True, | |
gaudi_config="Habana/stable-diffusion") | |
pipe.to(device) | |
def get_iframe(rgb_path: str, depth_path: str, viewer_mode: str = "6DOF"): | |
# buffered = BytesIO() | |
# rgb.convert("RGB").save(buffered, format="JPEG") | |
# rgb_base64 = base64.b64encode(buffered.getvalue()) | |
# buffered = BytesIO() | |
# depth.convert("RGB").save(buffered, format="JPEG") | |
# depth_base64 = base64.b64encode(buffered.getvalue()) | |
# rgb_base64 = "data:image/jpeg;base64," + rgb_base64.decode("utf-8") | |
# depth_base64 = "data:image/jpeg;base64," + depth_base64.decode("utf-8") | |
rgb_base64 = f"/file={rgb_path}" | |
depth_base64 = f"/file={depth_path}" | |
if viewer_mode == "6DOF": | |
return f"""<iframe src="file=static/three6dof.html" width="100%" height="500px" data-rgb="{rgb_base64}" data-depth="{depth_base64}"></iframe>""" | |
else: | |
return f"""<iframe src="file=static/depthmap.html" width="100%" height="500px" data-rgb="{rgb_base64}" data-depth="{depth_base64}"></iframe>""" | |
def predict( | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: float = 5.0, | |
seed: int = 0, | |
randomize_seed: bool = True, | |
): | |
generator = torch.Generator() if randomize_seed else torch.manual_seed(seed) | |
output = pipe( | |
prompt, | |
width=1024, | |
height=512, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
num_inference_steps=50, | |
) # type: ignore | |
rgb_image, depth_image = output.rgb[0], output.depth[0] # type: ignore | |
with NamedTemporaryFile(suffix=".png", delete=False, dir="tmp") as rgb_file: | |
rgb_image.save(rgb_file.name) | |
rgb_image = rgb_file.name | |
with NamedTemporaryFile(suffix=".png", delete=False, dir="tmp") as depth_file: | |
depth_image.save(depth_file.name) | |
depth_image = depth_file.name | |
iframe = get_iframe(rgb_image, depth_image) | |
return rgb_image, depth_image, generator.seed(), iframe | |
with gr.Blocks() as block: | |
gr.Markdown( | |
""" | |
## LDM3d Demo | |
[Model card](https://huggingface.co/Intel/ldm3d-pano) | |
[Diffusers docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/ldm3d_diffusion) | |
For better results, specify "360 view of" or "panoramic view of" in the prompt | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative Prompt") | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", minimum=0, maximum=10, step=0.1, value=5.0 | |
) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
seed = gr.Slider(label="Seed", minimum=0, | |
maximum=2**64 - 1, step=1) | |
generated_seed = gr.Number(label="Generated Seed") | |
markdown = gr.Markdown(label="Output Box") | |
with gr.Row(): | |
new_btn = gr.Button("New Image") | |
with gr.Column(scale=2): | |
html = gr.HTML(height='50%') | |
with gr.Row(): | |
rgb = gr.Image(label="RGB Image", type="filepath") | |
depth = gr.Image(label="Depth Image", type="filepath") | |
gr.Examples( | |
examples=[ | |
["360 view of a large bedroom", "", 7.0, 42, False]], | |
inputs=[prompt, negative_prompt, guidance_scale, seed, randomize_seed], | |
outputs=[rgb, depth, generated_seed, html], | |
fn=predict, | |
cache_examples=True) | |
new_btn.click( | |
fn=predict, | |
inputs=[prompt, negative_prompt, guidance_scale, seed, randomize_seed], | |
outputs=[rgb, depth, generated_seed, html], | |
) | |
block.launch() |