PixelDayCartoon / op /fused_act_cpu.py
JimmyLee05
update
89e1bfb
import os
import torch
from torch import nn
from torch.autograd import Function
from torch.nn import functional as F
module_path = os.path.dirname(__file__)
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(channel))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
if input.device.type == "cpu":
if bias is not None:
rest_dim = [1] * (input.ndim - bias.ndim - 1)
return (
F.leaky_relu(
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
)
* scale
)
else:
return F.leaky_relu(input, negative_slope=0.2) * scale
else:
return FusedLeakyReLUFunction.apply(
input.contiguous(), bias, negative_slope, scale
)