Spaces:
Runtime error
Runtime error
# Copyright 2022 Microsoft and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Callable, List, Optional, Tuple, Union | |
import torch | |
from diffusers import Transformer2DModel, VQModel | |
from diffusers.schedulers.scheduling_vq_diffusion import VQDiffusionScheduler | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...modeling_utils import ModelMixin | |
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from ...utils import logging | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class LearnedClassifierFreeSamplingEmbeddings(ModelMixin, ConfigMixin): | |
""" | |
Utility class for storing learned text embeddings for classifier free sampling | |
""" | |
def __init__(self, learnable: bool, hidden_size: Optional[int] = None, length: Optional[int] = None): | |
super().__init__() | |
self.learnable = learnable | |
if self.learnable: | |
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" | |
assert length is not None, "learnable=True requires `length` to be set" | |
embeddings = torch.zeros(length, hidden_size) | |
else: | |
embeddings = None | |
self.embeddings = torch.nn.Parameter(embeddings) | |
class VQDiffusionPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using VQ Diffusion | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vqvae ([`VQModel`]): | |
Vector Quantized Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent | |
representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. VQ Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
transformer ([`Transformer2DModel`]): | |
Conditional transformer to denoise the encoded image latents. | |
scheduler ([`VQDiffusionScheduler`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
""" | |
vqvae: VQModel | |
text_encoder: CLIPTextModel | |
tokenizer: CLIPTokenizer | |
transformer: Transformer2DModel | |
learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings | |
scheduler: VQDiffusionScheduler | |
def __init__( | |
self, | |
vqvae: VQModel, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
transformer: Transformer2DModel, | |
scheduler: VQDiffusionScheduler, | |
learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings, | |
): | |
super().__init__() | |
self.register_modules( | |
vqvae=vqvae, | |
transformer=transformer, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
scheduler=scheduler, | |
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, | |
) | |
def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance): | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
# get prompt text embeddings | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
if text_input_ids.shape[-1] > self.tokenizer.model_max_length: | |
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] | |
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] | |
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. | |
# While CLIP does normalize the pooled output of the text transformer when combining | |
# the image and text embeddings, CLIP does not directly normalize the last hidden state. | |
# | |
# CLIP normalizing the pooled output. | |
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 | |
text_embeddings = text_embeddings / text_embeddings.norm(dim=-1, keepdim=True) | |
# duplicate text embeddings for each generation per prompt | |
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0) | |
if do_classifier_free_guidance: | |
if self.learned_classifier_free_sampling_embeddings.learnable: | |
uncond_embeddings = self.learned_classifier_free_sampling_embeddings.embeddings | |
uncond_embeddings = uncond_embeddings.unsqueeze(0).repeat(batch_size, 1, 1) | |
else: | |
uncond_tokens = [""] * batch_size | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
# See comment for normalizing text embeddings | |
uncond_embeddings = uncond_embeddings / uncond_embeddings.norm(dim=-1, keepdim=True) | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = uncond_embeddings.shape[1] | |
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) | |
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
return text_embeddings | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
num_inference_steps: int = 100, | |
guidance_scale: float = 5.0, | |
truncation_rate: float = 1.0, | |
num_images_per_prompt: int = 1, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
) -> Union[ImagePipelineOutput, Tuple]: | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
num_inference_steps (`int`, *optional*, defaults to 100): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
truncation_rate (`float`, *optional*, defaults to 1.0 (equivalent to no truncation)): | |
Used to "truncate" the predicted classes for x_0 such that the cumulative probability for a pixel is at | |
most `truncation_rate`. The lowest probabilities that would increase the cumulative probability above | |
`truncation_rate` are set to zero. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
latents (`torch.FloatTensor` of shape (batch), *optional*): | |
Pre-generated noisy latents to be used as inputs for image generation. Must be valid embedding indices. | |
Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will | |
be generated of completely masked latent pixels. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
Returns: | |
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput `] if | |
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the | |
generated images. | |
""" | |
if isinstance(prompt, str): | |
batch_size = 1 | |
elif isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
batch_size = batch_size * num_images_per_prompt | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
text_embeddings = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance) | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
# get the initial completely masked latents unless the user supplied it | |
latents_shape = (batch_size, self.transformer.num_latent_pixels) | |
if latents is None: | |
mask_class = self.transformer.num_vector_embeds - 1 | |
latents = torch.full(latents_shape, mask_class).to(self.device) | |
else: | |
if latents.shape != latents_shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | |
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): | |
raise ValueError( | |
"Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," | |
f" {self.transformer.num_vector_embeds - 1} (inclusive)." | |
) | |
latents = latents.to(self.device) | |
# set timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=self.device) | |
timesteps_tensor = self.scheduler.timesteps.to(self.device) | |
sample = latents | |
for i, t in enumerate(self.progress_bar(timesteps_tensor)): | |
# expand the sample if we are doing classifier free guidance | |
latent_model_input = torch.cat([sample] * 2) if do_classifier_free_guidance else sample | |
# predict the un-noised image | |
# model_output == `log_p_x_0` | |
model_output = self.transformer( | |
latent_model_input, encoder_hidden_states=text_embeddings, timestep=t | |
).sample | |
if do_classifier_free_guidance: | |
model_output_uncond, model_output_text = model_output.chunk(2) | |
model_output = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) | |
model_output -= torch.logsumexp(model_output, dim=1, keepdim=True) | |
model_output = self.truncate(model_output, truncation_rate) | |
# remove `log(0)`'s (`-inf`s) | |
model_output = model_output.clamp(-70) | |
# compute the previous noisy sample x_t -> x_t-1 | |
sample = self.scheduler.step(model_output, timestep=t, sample=sample, generator=generator).prev_sample | |
# call the callback, if provided | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, sample) | |
embedding_channels = self.vqvae.config.vq_embed_dim | |
embeddings_shape = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) | |
embeddings = self.vqvae.quantize.get_codebook_entry(sample, shape=embeddings_shape) | |
image = self.vqvae.decode(embeddings, force_not_quantize=True).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |
def truncate(self, log_p_x_0: torch.FloatTensor, truncation_rate: float) -> torch.FloatTensor: | |
""" | |
Truncates log_p_x_0 such that for each column vector, the total cumulative probability is `truncation_rate` The | |
lowest probabilities that would increase the cumulative probability above `truncation_rate` are set to zero. | |
""" | |
sorted_log_p_x_0, indices = torch.sort(log_p_x_0, 1, descending=True) | |
sorted_p_x_0 = torch.exp(sorted_log_p_x_0) | |
keep_mask = sorted_p_x_0.cumsum(dim=1) < truncation_rate | |
# Ensure that at least the largest probability is not zeroed out | |
all_true = torch.full_like(keep_mask[:, 0:1, :], True) | |
keep_mask = torch.cat((all_true, keep_mask), dim=1) | |
keep_mask = keep_mask[:, :-1, :] | |
keep_mask = keep_mask.gather(1, indices.argsort(1)) | |
rv = log_p_x_0.clone() | |
rv[~keep_mask] = -torch.inf # -inf = log(0) | |
return rv | |